【猫狗数据集】使用学习率衰减策略并边训练边测试

  • 2020 年 3 月 12 日
  • 笔记

数据集下载地址:

链接:https://pan.baidu.com/s/1l1AnBgkAAEhh0vI5_loWKw
提取码:2xq4

创建数据集:https://www.cnblogs.com/xiximayou/p/12398285.html

读取数据集:https://www.cnblogs.com/xiximayou/p/12422827.html

进行训练:https://www.cnblogs.com/xiximayou/p/12448300.html

保存模型并继续进行训练:https://www.cnblogs.com/xiximayou/p/12452624.html

加载保存的模型并测试:https://www.cnblogs.com/xiximayou/p/12459499.html

划分验证集并边训练边验证:https://www.cnblogs.com/xiximayou/p/12464738.html

epoch、batchsize、step之间的关系:https://www.cnblogs.com/xiximayou/p/12405485.html

 

一个合适的学习率对网络的训练至关重要。学习率太大,会导致梯度在最优解处来回震荡,甚至无法收敛。学习率太小,将导致网络的收敛速度较为缓慢。一般而言,都会先采取较大的学习率进行训练,然后在训练的过程中不断衰减学习率。而学习率衰减的方式有很多,这里我们就只使用简单的方式。

上一节划分了验证集,这节我们要边训练边测试,同时要保存训练的最后一个epoch模型,以及保存测试准确率最高的那个模型。

首先是学习率衰减策略,这里展示两种方式:

scheduler = optim.lr_scheduler.StepLR(optimizer, 80, 0.1)  scheduler = optim.lr_scheduler.MultiStepLR(optimizer,[80,160],0.1)

第一种方式是每个80个epoch就将学习率衰减为原来的0.1倍。

第二种方式是在第80和第160个epoch时将学习率衰减为原来的0.1倍

比如说第1个epoch的学习率为0.1,那么在1-80epoch期间都会使用该学习率,在81-160期间使用0.1×0.1=0.01学习率,在161及以后使用0.01×0.1=0.001学习率

一般而言,会在1/3和2/3处进行学习率衰减,比如有200个epoch,那么在70、140个epoch上进行学习率衰减。不过也需要视情况而定。

接下来,我们将学习率衰减策略加入到main.py中:

main.py

import sys  sys.path.append("/content/drive/My Drive/colab notebooks")  from utils import rdata  from model import resnet  import torch.nn as nn  import torch  import numpy as np  import torchvision  import train  import torch.optim as optim    np.random.seed(0)  torch.manual_seed(0)  torch.cuda.manual_seed_all(0)    torch.backends.cudnn.deterministic = True  torch.backends.cudnn.benchmark = True    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')    batch_size=128  train_loader,val_loader,test_loader=rdata.load_dataset(batch_size)    model =torchvision.models.resnet18(pretrained=False)  model.fc = nn.Linear(model.fc.in_features,2,bias=False)  model.cuda()      #定义训练的epochs  num_epochs=6  #定义学习率  learning_rate=0.01  #定义损失函数  criterion=nn.CrossEntropyLoss()  #定义优化方法,简单起见,就是用带动量的随机梯度下降  optimizer = torch.optim.SGD(params=model.parameters(), lr=0.1, momentum=0.9,                            weight_decay=1*1e-4)  scheduler = optim.lr_scheduler.MultiStepLR(optimizer, [2,4], 0.1)  print("训练集有:",len(train_loader.dataset))  #print("验证集有:",len(val_loader.dataset))  print("测试集有:",len(test_loader.dataset))  def main():    trainer=train.Trainer(criterion,optimizer,model)    trainer.loop(num_epochs,train_loader,val_loader,test_loader,scheduler)    main()

这里我们只训练6个epoch,在第2和第4个epoch进行学习率衰减策略。

train.py

import torch  class Trainer:    def __init__(self,criterion,optimizer,model):      self.criterion=criterion      self.optimizer=optimizer      self.model=model    def get_lr(self):      for param_group in self.optimizer.param_groups:          return param_group['lr']    def loop(self,num_epochs,train_loader,val_loader,test_loader,scheduler=None,acc1=0.0):      self.acc1=acc1      for epoch in range(1,num_epochs+1):        lr=self.get_lr()        print("epoch:{},lr:{}".format(epoch,lr))        self.train(train_loader,epoch,num_epochs)        #self.val(val_loader,epoch,num_epochs)        self.test(test_loader,epoch,num_epochs)        if scheduler is not None:          scheduler.step()      def train(self,dataloader,epoch,num_epochs):      self.model.train()      with torch.enable_grad():        self._iteration_train(dataloader,epoch,num_epochs)      def val(self,dataloader,epoch,num_epochs):      self.model.eval()      with torch.no_grad():        self._iteration_val(dataloader,epoch,num_epochs)    def test(self,dataloader,epoch,num_epochs):      self.model.eval()      with torch.no_grad():        self._iteration_test(dataloader,epoch,num_epochs)      def _iteration_train(self,dataloader,epoch,num_epochs):      total_step=len(dataloader)      tot_loss = 0.0      correct = 0      for i ,(images, labels) in enumerate(dataloader):        images = images.cuda()        labels = labels.cuda()          # Forward pass        outputs = self.model(images)        _, preds = torch.max(outputs.data,1)        loss = self.criterion(outputs, labels)          # Backward and optimizer        self.optimizer.zero_grad()        loss.backward()        self.optimizer.step()        tot_loss += loss.data        if (i+1) % 2 == 0:            print('Epoch: [{}/{}], Step: [{}/{}], Loss: {:.4f}'                  .format(epoch, num_epochs, i+1, total_step, loss.item()))        correct += torch.sum(preds == labels.data).to(torch.float32)      ### Epoch info ####      epoch_loss = tot_loss/len(dataloader.dataset)      print('train loss: {:.4f}'.format(epoch_loss))      epoch_acc = correct/len(dataloader.dataset)      print('train acc: {:.4f}'.format(epoch_acc))      if epoch==num_epochs:        state = {          'model': self.model.state_dict(),          'optimizer':self.optimizer.state_dict(),          'epoch': epoch,          'train_loss':epoch_loss,          'train_acc':epoch_acc,        }        save_path="/content/drive/My Drive/colab notebooks/output/"        torch.save(state,save_path+"/resnet18_final"+".t7")    def _iteration_val(self,dataloader,epoch,num_epochs):      total_step=len(dataloader)      tot_loss = 0.0      correct = 0      for i ,(images, labels) in enumerate(dataloader):          images = images.cuda()          labels = labels.cuda()            # Forward pass          outputs = self.model(images)          _, preds = torch.max(outputs.data,1)          loss = self.criterion(outputs, labels)          tot_loss += loss.data          correct += torch.sum(preds == labels.data).to(torch.float32)          if (i+1) % 2 == 0:              print('Epoch: [{}/{}], Step: [{}/{}], Loss: {:.4f}'                    .format(1, 1, i+1, total_step, loss.item()))      ### Epoch info ####      epoch_loss = tot_loss/len(dataloader.dataset)      print('val loss: {:.4f}'.format(epoch_loss))      epoch_acc = correct/len(dataloader.dataset)      print('val acc: {:.4f}'.format(epoch_acc))    def _iteration_test(self,dataloader,epoch,num_epochs):      total_step=len(dataloader)      tot_loss = 0.0      correct = 0      for i ,(images, labels) in enumerate(dataloader):          images = images.cuda()          labels = labels.cuda()            # Forward pass          outputs = self.model(images)          _, preds = torch.max(outputs.data,1)          loss = self.criterion(outputs, labels)          tot_loss += loss.data          correct += torch.sum(preds == labels.data).to(torch.float32)          if (i+1) % 2 == 0:              print('Epoch: [{}/{}], Step: [{}/{}], Loss: {:.4f}'                    .format(1, 1, i+1, total_step, loss.item()))      ### Epoch info ####      epoch_loss = tot_loss/len(dataloader.dataset)      print('test loss: {:.4f}'.format(epoch_loss))      epoch_acc = correct/len(dataloader.dataset)      print('test acc: {:.4f}'.format(epoch_acc))      if epoch_acc > self.acc1:        state = {        "model": self.model.state_dict(),        "optimizer": self.optimizer.state_dict(),        "epoch": epoch,        "epoch_loss": epoch_loss,        "epoch_acc": epoch_acc,        "acc1": self.acc1,        }        save_path="/content/drive/My Drive/colab notebooks/output/"        print("在第{}个epoch取得最好的测试准确率,准确率为:{}".format(epoch,epoch_acc))        torch.save(state,save_path+"/resnet18_best"+".t7")        self.acc1=max(self.acc1,epoch_acc)

我们首先增加了test()和_iteration_test()用于测试。

这里需要注意的是:

UserWarning: Detected call of `lr_scheduler.step()` before `optimizer.step()`. In PyTorch 1.1.0 and later, you should call them in the opposite order: `optimizer.step()` before `lr_scheduler.step()`.  Failure to do this will result in PyTorch skipping the first value of the learning rate schedule.

也就是说:

scheduler = ...  >>> for epoch in range(100):  >>>     train(...)  >>>     validate(...)  >>>     scheduler.step()

在pytorch1.1.0及之后,scheduler.step()这个要放在最后面了。我们定义了一个获取学习率的函数,在每一个epoch的时候打印学习率。我们同时要存储训练的最后一个epoch的模型,方便我们继续训练。存储测试准确率最高的模型,方便我们使用。

最终结果如下,省略了其中的每一个step:

训练集有: 18255  测试集有: 4750  epoch:1,lr:0.1  train loss: 0.0086  train acc: 0.5235  test loss: 0.0055  test acc: 0.5402  在第1个epoch取得最好的测试准确率,准确率为:0.5402105450630188  epoch:2,lr:0.1  train loss: 0.0054  train acc: 0.5562  test loss: 0.0055  test acc: 0.5478  在第2个epoch取得最好的测试准确率,准确率为:0.547789454460144  epoch:3,lr:0.010000000000000002  train loss: 0.0052  train acc: 0.6098  test loss: 0.0053  test acc: 0.6198  在第3个epoch取得最好的测试准确率,准确率为:0.6197894811630249  epoch:4,lr:0.010000000000000002  train loss: 0.0051  train acc: 0.6150  test loss: 0.0051  test acc: 0.6291  在第4个epoch取得最好的测试准确率,准确率为:0.6290526390075684  train loss: 0.0051  train acc: 0.6222  test loss: 0.0052  test acc: 0.6257  epoch:6,lr:0.0010000000000000002  train loss: 0.0051  train acc: 0.6224  test loss: 0.0052  test acc: 0.6295  在第6个epoch取得最好的测试准确率,准确率为:0.6294736862182617

很神奇,lr最后面居然不是0。对lr和准确率输出时可指定输出小数点后?位:{:.?f}

最后看下保存的模型:

的确是都有的。

 

下一节:可视化训练和测试过程。