针对声学场景分类的神经结构搜索(CS CompLang)

卷积神经网络在声学场景分类(ASC)任务中被广泛采用,但是它们通常会带来沉重的计算负担。在这项工作中,我们提出了一个受MobileNetV2启发的轻量级高性能基线网络,该网络用单向内核替换了正方形卷积内核,在时间和频率维度上交替提取特征。此外,我们使用最新的神经架构搜索(NAS)范式探索了在建议的基准基础上构建的动态架构空间,该范式首先训练一个包含所有候选网络的超网,然后将著名的进化算法NSGA-II用于发现效率更高,精度更高且计算成本更低的网络。实验结果表明,我们搜索到的网络能够胜任ASC任务,在DCASE2018任务5评估集上达到90.3%的F1得分,这标志着一种新的先进性能,同时与我们的基准网络相比节省了25%的FLOP 。

原文题目:Neural Architecture Search on Acoustic Scene Classification

原文:Convolutional neural networks are widely adopted in Acoustic Scene Classification (ASC) tasks, but they generally carry a heavy computational burden. In this work, we propose a lightweight yet high-performing baseline network inspired by MobileNetV2, which replaces square convolutional kernels with unidirectional ones to extract features alternately in temporal and frequency dimensions. Furthermore, we explore a dynamic architecture space built on the basis of the proposed baseline with the recent Neural Architecture Search (NAS) paradigm, which first trains a supernet that incorporates all candidate networks and then applies a well-known evolutionary algorithm NSGA-II to discover more efficient networks with higher accuracy and lower computational cost. Experimental results demonstrate that our searched network is competent in ASC tasks, which achieves 90.3% F1-score on the DCASE2018 task 5 evaluation set, marking a new state-of-the-art performance while saving 25% of FLOPs compared to our baseline network.

原文作者:Jixiang Li,Chuming Liang,Bo Zhang,Zhao Wang,Fei Xiang,Xiangxiang Chu

原文地址:https://arxiv.org/abs/1912.12825

针对声学场景分类的神经结构搜索(CS CompLang).pdf