一文学会常规转录组分析

数据来源:Cytosolic acetyl-CoA promotes histone acetylation predominantly at H3K27 in Arabidopsis;GSE79524

我只试做了转录组分析那一部分。简单概括就是为了评估乙酰化对基因表达的影响,对野生型和突变体都做了转录组分析(基因差异表达分析和GO注释)。

原文方法,我换成了自己较熟悉的几个工具

1. 数据获取及质控

#1.脚本查看
$ cat dir_6.txt 
SRR3286802
SRR3286803
SRR3286804
SRR3286805
SRR3286806
SRR3286807

$ cat 1.sh 
dir=$(cut -f1 dir_6.txt)
for sample in $dir
do
prefetch $sample
done

$ cat 2.sh 
for i in `seq 2 7`
do
fastq-dump --gzip --split-3 --defline-qual '+' --defline-seq '@$ac-$si/$ri' ~/ncbi/public/sra/SRR328680${i}.sra -O /ifs1/Grp3/huangsiyuan/learn_rnaseq/mRNA-seq/data/ &
done

#2.下载及解压
sh 1.sh
sh 2.sh

#解压之后是这样的,可以看出是双端测序
$ ls
1.sh       SRR3286802_1.fastq.gz  SRR3286803_2.fastq.gz  SRR3286805_1.fastq.gz  SRR3286806_2.fastq.gz
2.sh       SRR3286802_2.fastq.gz  SRR3286804_1.fastq.gz  SRR3286805_2.fastq.gz  SRR3286807_1.fastq.gz
dir_6.txt  SRR3286803_1.fastq.gz  SRR3286804_2.fastq.gz  SRR3286806_1.fastq.gz  SRR3286807_2.fastq.gz

#3.质量检测:fastqc,multiqc
ls *fastq.gz | while read id
do
fastqc ${id} &
done
multiqc *fastqc*

#4.过滤接头序列及低质量reads片段
##就这组数据来说,质量检测的结果表明数据质量很好,因此这里省略的过滤这一步。

2. 下载gff/gtf注释文件并提取出感兴趣的基因/转录本区间

一个基因可能对应不同的转录本,不同的转录本可能对应不同的功能。
以拟南芥的gff注释文件为例:

#提取基因
$ less Arabidopsis_thaliana.TAIR10.42.gff3 | awk '{ if($3=="gene") print $0 }' | cut -d ";" -f1 | head -n 5
1	araport11	gene	3631	5899	.	+	.	ID=gene:AT1G01010
1	araport11	gene	6788	9130	.	-	.	ID=gene:AT1G01020
1	araport11	gene	11649	13714	.	-	.	ID=gene:AT1G01030
1	araport11	gene	23121	31227	.	+	.	ID=gene:AT1G01040
1	araport11	gene	31170	33171	.	-	.	ID=gene:AT1G01050

#提取转录本
$ less Arabidopsis_thaliana.TAIR10.42.gff3 | awk '{ if($3=="mRNA") print $0 }' | cut -d ";" -f1 | head -n 10
1	araport11	mRNA	3631	5899	.	+	.	ID=transcript:AT1G01010.1
1	araport11	mRNA	6788	8737	.	-	.	ID=transcript:AT1G01020.6
1	araport11	mRNA	6788	8737	.	-	.	ID=transcript:AT1G01020.2
1	araport11	mRNA	6788	9130	.	-	.	ID=transcript:AT1G01020.3
1	araport11	mRNA	6788	9130	.	-	.	ID=transcript:AT1G01020.5
1	araport11	mRNA	6788	9130	.	-	.	ID=transcript:AT1G01020.4
1	araport11	mRNA	6788	9130	.	-	.	ID=transcript:AT1G01020.1
1	araport11	mRNA	11649	13714	.	-	.	ID=transcript:AT1G01030.1
1	araport11	mRNA	11649	13714	.	-	.	ID=transcript:AT1G01030.2
1	araport11	mRNA	23121	31227	.	+	.	ID=transcript:AT1G01040.1

从ID可以看出AT1G01020基因有6个转录本。这篇文献比较的是基因层面的表达差异,所以这里我提取的是基因gff,算上线粒体和叶绿体上的基因一共27655个。

$ less Arabidopsis_thaliana.TAIR10.42.gff3 | awk '{ if($3=="gene") print $0 }' > gene27655.gff

3. 将reads比对到参考基因组

3.1 为参考基因组建立索引
nohup ~/mysoft/hisat2-2.1.0/hisat2-build Arabidopsis_thaliana.TAIR10.dna.toplevel.fa Arabidopsis_thaliana &

3.2 比对
$ cat 3.sh 
for i in `seq 2 7`
do
hisat2 -x ~/learn_rnaseq/mRNA-seq/ref/Arabidopsis_thaliana -p 8 \
-1 ~/learn_rnaseq/mRNA-seq/data/SRR328680${i}_1.fastq.gz \
-2 ~/learn_rnaseq/mRNA-seq/data/SRR328680${i}_2.fastq.gz \
-S ~/learn_rnaseq/mRNA-seq/map/SRR328680${i}.sam
done

$ nohup sh 3.sh &

从报告文件来看比对率都挺高的,97%以上。

3.3 sam转bam, 并排序
$ cat 1.sh 
for i in `seq 2 7`
do
/ifs1/Software/biosoft/samtools-1.9/samtools view -@ 8 -Sb SRR328680${i}.sam > SRR328680${i}.bam
/ifs1/Software/biosoft/samtools-1.9/samtools sort -@ 8 -n SRR328680${i}.bam > SRR328680${i}.n.bam
done
$ nohup  sh 1.sh &

4. 计算表达量

Usage: featureCounts [options] -a <annotation_file> -o <output_file> input_file1 [input_file2] ...
nohup ~/mysoft/subread-1.6.3-source/bin/featureCounts -F GTF -t gene -g gene_id -T 4 -a ~/learn_rnaseq/mRNA-seq/ref_ht/gene27655.gff -o ~/learn_rnaseq/mRNA-seq/count/test ~/learn_rnaseq/mRNA-seq/map/SRR328680*.n.bam &
#上面这一步运行完之后会多出test.summary,test这两个文件
nohup ~/mysoft/subread-1.6.3-source/bin/featureCounts -F GTF -t gene -g gene_id -T 4 -p -a ~/learn_rnaseq/mRNA-seq/ref_ht/gene27655.gff -o ~/learn_rnaseq/mRNA-seq/count/test2 ~/learn_rnaseq/mRNA-seq/map/SRR328680*.n.bam 2> log2 &
#上面这行只多了-p选项,为了看看在双端测序中统计fragments和reads有什么区别。运行完了多出test2.summary,test2两个文件。

从test2和text两个矩阵文件中,可以看出加了p之后求的是fragments的计数,数值大概是reads计数的1/2,这很好理解,因为fragment的定义中就是包含了一对reads的。

$ lsx test2 |head -n 20 | tail -n 5
AT1G01140       1       64166   67774   -       3609    2309    2073    2323    1522    1742    1254
AT1G01150       1       69911   72138   -       2228    3       0       0       1       2       4
AT1G01160       1       72339   74096   +       1758    766     730     857     745     819     747
AT1G01170       1       73931   74737   -       807     1796    1758    1748    1061    1540    1340
AT1G01180       1       75390   76845   +       1456    374     315     311     358     284     312

$ lsx test |head -n 20 | tail -n 5
AT1G01140       1       64166   67774   -       3609    4587    4118    4613    3025    3469    2484
AT1G01150       1       69911   72138   -       2228    6       0       0       2       4       8
AT1G01160       1       72339   74096   +       1758    1449    1383    1637    1412    1538    1409
AT1G01170       1       73931   74737   -       807     3220    3121    3169    1914    2771    2369
AT1G01180       1       75390   76845   +       1456    745     619     619     708     558     621

将test2文件中的这7列提取出来即为表达矩阵。

grep "^AT" test2 | cut -f1,7,8,9,10,11,12 > 6sample_count_matrix.txt

5. 差异表达分析

6sample_count_matrix.txt

使用DESeq2 包。

a <- as.matrix(read.table("6sample_count_matrix.txt",sep="\t",header = T,row.names=1))
condition <- factor(c(rep("WT",3),rep("acc1.5",3)), levels = c("WT","acc1.5"))
colData <- data.frame(row.names=colnames(a), condition)
#查看一下
> colData
        condition
WT1            WT
WT2            WT
WT3            WT
acc1.51    acc1.5
acc1.52    acc1.5
acc1.53    acc1.5

#确保
> all(rownames(colData) == colnames(a))
[1] TRUE

dds <- DESeqDataSetFromMatrix(a, colData, design= ~ condition)
dds <- DESeq(dds)
#运行结束会报告
estimating size factors
estimating dispersions
gene-wise dispersion estimates
mean-dispersion relationship
final dispersion estimates
fitting model and testing

#得到初步结果并查看
res <-  results(dds, contrast=c("condition", "acc1.5", "WT"))
##log2(fold change)也是一个衡量差异显著性的指标
resLFC <- lfcShrink(dds, coef="condition_acc1.5_vs_WT", type="apeglm")
resLFC
##按照p值由小到大排列
resOrdered <- res[order(res$pvalue),]
resOrdered
##矫正p值小于0.001的有多少个差异基因
sum(res$padj < 0.001, na.rm=TRUE)
##画个MA-plot看看大体趋势
plotMA(res, ylim=c(-2,2))
plotMA(resLFC, ylim=c(-2,2))

#按照自定义的阈值提取差异基因并导出
diff_gene_deseq2 <-subset(res, padj < 0.001 & abs(log2FoldChange) > 1)
write.csv(diff_gene_deseq2,file= "DEG_acc1.5_vs_WT.csv")

6. 简单的GO注释

首选clusterProfiler包。

library(”clusterProfiler“)
library("org.At.tair.db")
e <- read.table("DEG_acc1.5_vs_WT.csv", header = T,sep = ",")
f <- e[,1]
#转换ID并将ENTREZID编号作为后面的识别ID
ids <- bitr(f, fromType="TAIR", toType=c("SYMBOL","ENTREZID"), OrgDb="org.At.tair.db")
f <- ids[,3]
按照GO系统给基因分类
ggo <- groupGO(gene     = f,
               OrgDb    = org.At.tair.db,
               ont      = "CC",
               level    = 3,
               readable = TRUE)
> head(ggo)
                   ID                    Description Count GeneRatio
GO:0005886 GO:0005886                plasma membrane   237   237/718
GO:0005628 GO:0005628              prospore membrane     0     0/718
GO:0005789 GO:0005789 endoplasmic reticulum membrane     3     3/718
GO:0019867 GO:0019867                 outer membrane     6     6/718
GO:0031090 GO:0031090             organelle membrane    63    63/718
GO:0034357 GO:0034357        photosynthetic membrane    23    23/718
富集分析
ego2 <- enrichGO(gene         = ids$TAIR,
                 OrgDb         = org.At.tair.db,
                 keyType       = 'TAIR',
                 ont           = "CC",
                 pAdjustMethod = "BH",
                 pvalueCutoff  = 0.01,
                 qvalueCutoff  = 0.05,
                 readable      = TRUE)

> head(ego2)
                   ID          Description GeneRatio   BgRatio       pvalue    p.adjust      qvalue
GO:0009505 GO:0009505 plant-type cell wall    20/654 274/24998 3.989815e-05 0.002907596 0.002713546
GO:0048046 GO:0048046             apoplast    22/654 328/24998 5.995043e-05 0.002907596 0.002713546
                                                                                                                                             geneID
GO:0009505         ATBXL2/ATPMEPCRA/LRX1/AtWAK1/ATPME2/GLL22/LRX2/SS3/ATPAP1/ATC4H/CASP1/BGLU15/RHS12/BGAL1/ATGRP-5/ATPCB/EARLI1/ATPGIP2/FLA13/PME5
GO:0048046 iPGAM1/ATDHAR1/AOAT1/ANN1/ATPEPC1/GDPDL1/CLE12/AGT/ENO2/GOX1/ATPCB/AtBG2/CRK9/CORI3/PMDH2/BETA/UDG4/ATSBT4.12/LTP3/AtPRX71/ATBXL4/ANNAT2
           Count
GO:0009505    20
GO:0048046    22
GO基因集富集分析
geneList = 2^e[,3]
names(geneList)=as.character(ids[,3])
geneList = sort(geneList, decreasing = TRUE)

ego3 <- gseGO(geneList     = geneList,
              OrgDb        = org.At.tair.db,
              ont          = "CC",
              nPerm        = 1000,
              minGSSize    = 100,
              maxGSSize    = 500,
              pvalueCutoff = 0.05,
              verbose      = FALSE)
head(ego3)

enrichGO和gseGO这两个都用得比较多。

可视化
barplot(ggo, drop=TRUE, showCategory=12)
dotplot(ego2)


自己的分析略显简单,没有过多的细化,后面随着学习的深入再来补充。注:第2步提取gene_feature这一步没有必要,因为软件可以自动识别feature。——2019.8.10


reference

Statistical analysis and visualization of functional profiles for genes and gene clusters:
//www.bioconductor.org/packages/release/bioc/vignettes/clusterProfiler/inst/doc/clusterProfiler.html
Analyzing RNA-seq data with DESeq2:
//www.bioconductor.org/packages/release/bioc/vignettes/DESeq2/inst/doc/DESeq2.html

因水平有限,有错误的地方,欢迎批评指正!