seurat包分析多组对比单细胞数据

library(Seurat)  #import data  #C_data T_data 为要分析的data.frame    Control<-CreateSeuratObject(counts =C_data,min.cells = 5, min.features = 10,project = "control")  Treat<-CreateSeuratObject(counts =T_data,min.cells = 5, min.features = 10,project = "treat")  #将多个数据合成一个list  T_C<-list(Treat,Control)  names(T_C)<-c("T","C")  #分别对每个找Variable Features  for (i in 1:length(T_C)){    T_C[[i]]<-FindVariableFeatures(T_C[[i]], selection.method = "vst",                         nfeatures = 2000, verbose = FALSE)  }  #找到交集的feature  T_C<- FindIntegrationAnchors(object.list = T_C, dims = 1:20)  #整合数据  T_C <- IntegrateData(anchorset = T_C, dims = 1:20)  DefaultAssay(T_C) <- "integrated"  # Run the standard workflow for visualization and clustering  T_C <- ScaleData(T_C, verbose = FALSE)  T_C <- RunPCA(T_C, npcs = 30, verbose = FALSE)  # t-SNE and Clustering  T_C <- RunUMAP(T_C, reduction = "pca", dims = 1:20)  T_C <- FindNeighbors(T_C, reduction = "pca", dims = 1:20)  T_C <- FindClusters(T_C, resolution = 0.5)  # Visualization  p1 <- DimPlot(T_C, reduction = "umap", group.by = "stim")  p2 <- DimPlot(T_C, reduction = "umap", label = TRUE)  plot_grid(p1, p2)