利用Python绘制全国各省新型冠状病毒疫情变化动态图
- 2020 年 2 月 25 日
- 笔记

题图:Image by enriquelopezgarre from Pixabay
截至2月2日24时,累计报告确诊病例17205例,现有重症病例2296例,累计死亡病例361例,累计治愈出院475例。现有疑似病例21558例。


图表来自百度疫情实时大数据报告
在家闲来无事,就用python绘制了全国各省新型冠状病毒疫情状况动态图表,其地图数据来源于腾讯的疫情实时追踪展示地图:https://github.com/dongli/china-shapefiles
全国各省的疫情实时数据来源于丁香园:https://github.com/BlankerL/DXY-2019-nCoV-Data/blame/master/DXYArea.csv#
先看下具体效果:
具体实现代码
我们使用下载的 china.shp 和 china_nine_dotted_line.shp 两个文件,可以绘制如下所示的带南海地区单独展示的中国地图

import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from matplotlib.font_manager import FontProperties from matplotlib.backends.backend_agg import FigureCanvasAgg from matplotlib.patches import Polygon from matplotlib.collections import PatchCollection from mpl_toolkits.basemap import Basemap import matplotlib.dates as mdates import matplotlib as mpl plt.rcParams['font.sans-serif']=['SimHei'] #用来正常显示中文标签 plt.rcParams['axes.unicode_minus']=False #用来正常显示负号 %matplotlib inline
fig = plt.figure(figsize=(12,12)) ax = fig.gca() #plt.subplots_adjust(left=0.12, right=0.98, top=0.75, bottom=0) basemap = Basemap(llcrnrlon= 80,llcrnrlat=10,urcrnrlon=150,urcrnrlat=50,projection='poly',lon_0 = 116.65,lat_0 = 40.02,ax = ax) basemap.readshapefile(shapefile = 'china',name = "province", drawbounds=True) basemap.readshapefile('china_nine_dotted_line',name ='section', drawbounds=True) ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') ax.spines['left'].set_color('none') ax.spines['bottom'].set_color('none') df_mapData = pd.DataFrame(basemap.province_info) df_mapData['OWNER'] = [x.strip('x00') for x in df_mapData['OWNER']] #省份 df_mapData['FCNAME'] =[x.strip('x00') for x in df_mapData['FCNAME']] province=np.unique(df_mapData['OWNER']) color = sns.husl_palette(len(province),h=15/360, l=.65, s=1).as_hex() colors = dict(zip(province.tolist(),color)) for info, shape in zip(basemap.province_info, basemap.province): pname = info['OWNER'].strip('x00') fcname = info['FCNAME'].strip('x00') if pname != fcname: # 不绘制海岛 continue color = colors[pname] poly = Polygon(shape, facecolor=color, edgecolor='k') ax.add_patch(poly) ax2= fig.add_axes([0.7, 0.25, 0.15, 0.15]) basemap2 = Basemap(llcrnrlon= 106.55,llcrnrlat=4.61,urcrnrlon=123.58,urcrnrlat=25.45,projection='poly',lon_0 = 116.65,lat_0 = 40.02,ax = ax2) basemap2.readshapefile(shapefile = 'china',name = "province", drawbounds=True) basemap2.readshapefile('china_nine_dotted_line',name ='section', drawbounds=True) for info, shape in zip(basemap2.province_info, basemap2.province): pname = info['OWNER'].strip('x00') fcname = info['FCNAME'].strip('x00') if pname != fcname: # 不绘制海岛 continue color = colors[pname] poly = Polygon(shape, facecolor=color, edgecolor='k') ax2.add_patch(poly)

from datetime import datetime from matplotlib import cm,colors df_data=pd.read_csv('DXYArea.csv') df_data['updateTime']=[datetime.strptime(d, '%Y-%m-%d %H:%M:%S.%f').date() for d in df_data['updateTime']] df_data['month']=[d.month for d in df_data['updateTime']] df_data['day']=[d.strftime('%d') for d in df_data['updateTime']] df_data['date']=[d.strftime('%m-%d') for d in df_data['updateTime']] df_data=df_data.drop_duplicates(subset = ['month','day','provinceName']).reset_index() labels = [ '1-9', '10-99', '100-999', '1000-10000','>10000'] n_colors=len(labels) color=[colors.rgb2hex(x) for x in cm.get_cmap( 'YlOrRd',n_colors)(np.linspace(0, 1, n_colors))] color_array=[x for x in cm.get_cmap( 'YlOrRd',n_colors)(np.linspace(0, 1, n_colors))] df_data['lablels']=pd.cut(df_data['province_confirmedCount'], [0,10,100,1000,10000,100000], labels=labels) df_data['color']=[color[i] for i in df_data['lablels'].values.codes] df_data=df_data.set_index('provinceName',drop=False) days=[ '24', '25', '26', '27', '28', '29', '30', '31','01', '02', '03']#np.unique(df_data['day']) df_day=df_data[df_data['day']==days[7]][['provinceName','province_confirmedCount','day','month','color','date']]
def draw_ChinaMap(Num_day): ax.clear() df_day=df_data[df_data['day']==days[Num_day]][['provinceName','province_confirmedCount','day','month','color','date']] basemap = Basemap(llcrnrlon= 80,llcrnrlat=10,urcrnrlon=150,urcrnrlat=50,projection='poly',lon_0 = 116.65,lat_0 = 40.02,ax = ax) basemap.readshapefile(shapefile = 'C:/Users/Peter_Zhang/Desktop/Hex_Map/china_shapefiles_master/china', name = "province", drawbounds=True) basemap.readshapefile('C:/Users/Peter_Zhang/Desktop/Hex_Map/china_shapefiles_master/china_nine_dotted_line', name ='section', drawbounds=True) ax.spines['right'].set_color('none') ax.spines['top'].set_color('none') ax.spines['left'].set_color('none') ax.spines['bottom'].set_color('none') for info, shape in zip(basemap.province_info, basemap.province): pname = info['OWNER'].strip('x00') fcname = info['FCNAME'].strip('x00') if pname != fcname: # 不绘制海岛 continue color='white' if sum(df_day['provinceName']==pname)>0: color = df_day.loc[pname,'color'] poly = Polygon(shape, facecolor=color, edgecolor='k') ax.add_patch(poly) patches = [ mpatches.Patch(color=color_array[i], label=labels[i]) for i in range(n_colors) ] # put those patched as legend-handles into the legend legend=ax.legend(handles=patches, borderaxespad=0,loc="center right",markerscale=1.3, edgecolor='none',facecolor='none',fontsize=15,title='') ax.text(0.02,1.07, s='全国各省新型冠状病毒疫情状况', transform=ax.transAxes, size=30, weight='bold',color='k') ax.text(0.02,1.0, s='全国新型冠状病毒确诊总数为:'+str(df_day['province_confirmedCount'].sum())+'; 湖北省新型冠状病毒确诊总数为:'+ str(df_day.loc['湖北省','province_confirmedCount']), transform=ax.transAxes, size=20,weight='light', color='k') ax.text(0.05,0.22, s=df_day['date'][0], transform=ax.transAxes, size=70, color='gray',weight='bold',family='Arial') ax.text(0.02,0.05, s='数据来源:https://github.com/BlankerL/DXY-2019-nCoV-Data/blame/master/DXYArea.csv', transform=ax.transAxes, size=10, color='k') basemap2 = Basemap(llcrnrlon= 106.55,llcrnrlat=4.61,urcrnrlon=123.58,urcrnrlat=25.45,projection='poly',lon_0 = 116.65,lat_0 = 40.02,ax = ax2) basemap2.readshapefile(shapefile = 'china',name = "province", drawbounds=True) basemap2.readshapefile('china_nine_dotted_line',name ='section', drawbounds=True) for info, shape in zip(basemap2.province_info, basemap2.province): pname = info['OWNER'].strip('x00') fcname = info['FCNAME'].strip('x00') if pname != fcname: # 不绘制海岛 continue color='white' if sum(df_day['provinceName']==pname)>0: color = df_day.loc[pname,'color'] poly = Polygon(shape, facecolor=color, edgecolor='k') ax2.add_patch(poly) fig = plt.figure(figsize=(12,12)) ax = fig.gca() ax2= fig.add_axes([0.75, 0.2, 0.15, 0.15]) plt.subplots_adjust(left=0.12, right=0.98, top=0.85, bottom=0.1) draw_ChinaMap(2)
matplotlib 包和 plotnine 包都可以实现动态数据的可视化演示。
其中,在matplotlib包中,函数FuncAnimation(fig,func,frames,init_func,interval,blit)
是绘制动图的主要函数,其参数如下:
(1) fig 为绘制动图的画布名称;
(2) func为自定义动画函数update(),比如11-4-1的draw_barchart(year)和11-4-2的draw_areachart(Num_Date);
(3) frames为动画长度,一次循环包含的帧数,在函数运行时,其值会传递给函数update(n)的形参“n”;
(4) init_func为自定义开始帧,即初始化函数,可省略;
(5) interval为更新频率,以ms计算;
(6) blit为选择更新所有点,还是仅更新产生变化的点。应选择True,但mac用户请选择False,否则无法显示。
plotnine 包的 PlotnineAnimation() 函数也可以绘制动态图表,但是对于不断更新的数据绘制动态图表时,动态图表生成速度很慢。
import matplotlib.animation as animation from IPython.display import HTML fig = plt.figure(figsize=(12,12)) ax = fig.gca() ax2= fig.add_axes([0.75, 0.2, 0.15, 0.15]) plt.subplots_adjust(left=0.12, right=0.98, top=0.85, bottom=0.1) animator = animation.FuncAnimation(fig, draw_ChinaMap, frames=np.arange(0,len(days),1),interval=1000) HTML(animator.to_jshtml())