一文读懂SuperEdge拓扑算法

前言

SuperEdge service group 利用 application-grid-wrapper 实现拓扑感知,完成了同一个 nodeunit 内服务的闭环访问

在深入分析 application-grid-wrapper 之前,这里先简单介绍一下社区 Kubernetes 原生支持的拓扑感知特性

Kubernetes service topology awareness 特性于v1.17发布alpha版本,用于实现路由拓扑以及就近访问特性。用户需要在 service 中添加 topologyKeys 字段标示拓扑key类型,只有具有相同拓扑域的endpoint会被访问到,目前有三种 topologyKeys可供选择:

  • “kubernetes.io/hostname”:访问本节点内(kubernetes.io/hostname label value相同)的 endpoint,如果没有则 service 访问失败
  • “topology.kubernetes.io/zone”:访问相同zone域内(topology.kubernetes.io/zone label value 相同)的 endpoint,如果没有则 service 访问失败
  • “topology.kubernetes.io/region”:访问相同region域内(topology.kubernetes.io/region label value相同)的 endpoint,如果没有则 service 访问失败

除了单独填写如上某一个拓扑key之外,还可以将这些key构造成列表进行填写,例如:["kubernetes.io/hostname", "topology.kubernetes.io/zone", "topology.kubernetes.io/region"],这表示:优先访问本节点内的 endpoint;如果不存在,则访问同一个 zone 内的 endpoint;如果再不存在,则访问同一个 region 内的 endpoint,如果都不存在则访问失败

另外,还可以在列表最后(只能最后一项)添加”*”表示:如果前面拓扑域都失败,则访问任何有效的 endpoint,也即没有限制拓扑了,示例如下:

# A Service that prefers node local, zonal, then regional endpoints but falls back to cluster wide endpoints.
apiVersion: v1
kind: Service
metadata:
  name: my-service
spec:
  selector:
    app: my-app
  ports:
    - protocol: TCP
      port: 80
      targetPort: 9376
  topologyKeys:
    - "kubernetes.io/hostname"
    - "topology.kubernetes.io/zone"
    - "topology.kubernetes.io/region"
    - "*"

而service group实现的拓扑感知和社区对比,有如下区别:

  • service group 拓扑key可以自定义,也即为 gridUniqKey,使用起来更加灵活;而社区实现目前只有三种选择:”kubernetes.io/hostname”,”topology.kubernetes.io/zone” 以及 “topology.kubernetes.io/region”
  • service group 只能填写一个拓扑 key,也即只能访问本拓扑域内有效的 endpoint,无法访问其它拓扑域的 endpoint;而社区可以通过 topologyKey 列表以及”*”实现其它备选拓扑域 endpoint 的访问

service group 实现的拓扑感知,service 配置如下:

# A Service that only prefers node zone1al endpoints.
apiVersion: v1
kind: Service
metadata:
  annotations:
    topologyKeys: '["zone1"]'
  labels:
    superedge.io/grid-selector: servicegrid-demo
  name: servicegrid-demo-svc
spec:
  ports:
  - port: 80
    protocol: TCP
    targetPort: 8080
  selector:
    appGrid: echo

在介绍完 service group 实现的拓扑感知后,我们深入到源码分析实现细节。同样的,这里以一个使用示例开始分析:

# step1: labels edge nodes
$ kubectl  get nodes
NAME    STATUS   ROLES    AGE   VERSION
node0   Ready    <none>   16d   v1.16.7
node1   Ready    <none>   16d   v1.16.7
node2   Ready    <none>   16d   v1.16.7
# nodeunit1(nodegroup and servicegroup zone1)
$ kubectl --kubeconfig config label nodes node0 zone1=nodeunit1  
# nodeunit2(nodegroup and servicegroup zone1)
$ kubectl --kubeconfig config label nodes node1 zone1=nodeunit2
$ kubectl --kubeconfig config label nodes node2 zone1=nodeunit2
...
# step3: deploy echo ServiceGrid
$ cat <<EOF | kubectl --kubeconfig config apply -f -
apiVersion: superedge.io/v1
kind: ServiceGrid
metadata:
  name: servicegrid-demo
  namespace: default
spec:
  gridUniqKey: zone1
  template:
    selector:
      appGrid: echo
    ports:
    - protocol: TCP
      port: 80
      targetPort: 8080
EOF
servicegrid.superedge.io/servicegrid-demo created
# note that there is only one relevant service generated
$ kubectl  get svc
NAME                   TYPE        CLUSTER-IP        EXTERNAL-IP   PORT(S)   AGE
kubernetes             ClusterIP   192.168.0.1       <none>        443/TCP   16d
servicegrid-demo-svc   ClusterIP   192.168.6.139     <none>        80/TCP    10m
# step4: access servicegrid-demo-svc(service topology and closed-looped)
# execute on node0
$ curl 192.168.6.139|grep "node name"
        node name:      node0
# execute on node1 and node2
$ curl 192.168.6.139|grep "node name"
        node name:      node2
$ curl 192.168.6.139|grep "node name"
        node name:      node1

在创建完 ServiceGrid CR 后,ServiceGrid Controller 负责根据 ServiceGrid 产生对应的 service (包含由serviceGrid.Spec.GridUniqKey 构成的 topologyKeys annotations);而 application-grid-wrapper 根据 service 实现拓扑感知,下面依次分析。

ServiceGrid Controller 分析

ServiceGrid Controller 逻辑和 DeploymentGrid Controller 整体一致,如下:

  • 1、创建并维护 service group 需要的若干CRDs(包括:ServiceGrid)
  • 2、监听 ServiceGrid event,并填充 ServiceGrid 到工作队列中;循环从队列中取出 ServiceGrid 进行解析,创建并且维护对应的 service
  • 3、监听 service event,并将相关的 ServiceGrid 塞到工作队列中进行上述处理,协助上述逻辑达到整体 reconcile 逻辑

注意这里区别于 DeploymentGrid Controller:

  • 一个 ServiceGrid 对象只产生一个 service
  • 只需额外监听 service event,无需监听 node 事件。因为 node的CRUD 与 ServiceGrid 无关
  • ServiceGrid 对应产生的 service,命名为:{ServiceGrid}-svc
func (sgc *ServiceGridController) syncServiceGrid(key string) error {
    startTime := time.Now()
    klog.V(4).Infof("Started syncing service grid %q (%v)", key, startTime)
    defer func() {
        klog.V(4).Infof("Finished syncing service grid %q (%v)", key, time.Since(startTime))
    }()
    namespace, name, err := cache.SplitMetaNamespaceKey(key)
    if err != nil {
        return err
    }
    sg, err := sgc.svcGridLister.ServiceGrids(namespace).Get(name)
    if errors.IsNotFound(err) {
        klog.V(2).Infof("service grid %v has been deleted", key)
        return nil
    }
    if err != nil {
        return err
    }
    if sg.Spec.GridUniqKey == "" {
        sgc.eventRecorder.Eventf(sg, corev1.EventTypeWarning, "Empty", "This service grid has an empty grid key")
        return nil
    }
    // get service workload list of this grid
    svcList, err := sgc.getServiceForGrid(sg)
    if err != nil {
        return err
    }
    if sg.DeletionTimestamp != nil {
        return nil
    }
    // sync service grid relevant services workload
    return sgc.reconcile(sg, svcList)
}
func (sgc *ServiceGridController) getServiceForGrid(sg *crdv1.ServiceGrid) ([]*corev1.Service, error) {
    svcList, err := sgc.svcLister.Services(sg.Namespace).List(labels.Everything())
    if err != nil {
        return nil, err
    }
    labelSelector, err := common.GetDefaultSelector(sg.Name)
    if err != nil {
        return nil, err
    }
    canAdoptFunc := controller.RecheckDeletionTimestamp(func() (metav1.Object, error) {
        fresh, err := sgc.crdClient.SuperedgeV1().ServiceGrids(sg.Namespace).Get(context.TODO(), sg.Name, metav1.GetOptions{})
        if err != nil {
            return nil, err
        }
        if fresh.UID != sg.UID {
            return nil, fmt.Errorf("orignal service grid %v/%v is gone: got uid %v, wanted %v", sg.Namespace,
                sg.Name, fresh.UID, sg.UID)
        }
        return fresh, nil
    })
    cm := controller.NewServiceControllerRefManager(sgc.svcClient, sg, labelSelector, util.ControllerKind, canAdoptFunc)
    return cm.ClaimService(svcList)
}
func (sgc *ServiceGridController) reconcile(g *crdv1.ServiceGrid, svcList []*corev1.Service) error {
    var (
        adds    []*corev1.Service
        updates []*corev1.Service
        deletes []*corev1.Service
    )
    sgTargetSvcName := util.GetServiceName(g)
    isExistingSvc := false
    for _, svc := range svcList {
        if svc.Name == sgTargetSvcName {
            isExistingSvc = true
            template := util.KeepConsistence(g, svc)
            if !apiequality.Semantic.DeepEqual(template, svc) {
                updates = append(updates, template)
            }
        } else {
            deletes = append(deletes, svc)
        }
    }
    if !isExistingSvc {
        adds = append(adds, util.CreateService(g))
    }
    return sgc.syncService(adds, updates, deletes)
}
func CreateService(sg *crdv1.ServiceGrid) *corev1.Service {
    svc := &corev1.Service{
        ObjectMeta: metav1.ObjectMeta{
            Name:      GetServiceName(sg),
            Namespace: sg.Namespace,
            // Append existed ServiceGrid labels to service to be created
            Labels: func() map[string]string {
                if sg.Labels != nil {
                    newLabels := sg.Labels
                    newLabels[common.GridSelectorName] = sg.Name
                    newLabels[common.GridSelectorUniqKeyName] = sg.Spec.GridUniqKey
                    return newLabels
                } else {
                    return map[string]string{
                        common.GridSelectorName:        sg.Name,
                        common.GridSelectorUniqKeyName: sg.Spec.GridUniqKey,
                    }
                }
            }(),
            Annotations: make(map[string]string),
        },
        Spec: sg.Spec.Template,
    }
    keys := make([]string, 1)
    keys[0] = sg.Spec.GridUniqKey
    keyData, _ := json.Marshal(keys)
    svc.Annotations[common.TopologyAnnotationsKey] = string(keyData)
    return svc
}

由于逻辑与DeploymentGrid类似,这里不展开细节,重点关注 application-grid-wrapper 部分

application-grid-wrapper 分析

在 ServiceGrid Controller 创建完 service 之后,application-grid-wrapper 的作用就开始启动了:

apiVersion: v1
kind: Service
metadata:
  annotations:
    topologyKeys: '["zone1"]'
  creationTimestamp: "2021-03-03T07:33:30Z"
  labels:
    superedge.io/grid-selector: servicegrid-demo
  name: servicegrid-demo-svc
  namespace: default
  ownerReferences:
  - apiVersion: superedge.io/v1
    blockOwnerDeletion: true
    controller: true
    kind: ServiceGrid
    name: servicegrid-demo
    uid: 78c74d3c-72ac-4e68-8c79-f1396af5a581
  resourceVersion: "127987090"
  selfLink: /api/v1/namespaces/default/services/servicegrid-demo-svc
  uid: 8130ba7b-c27e-4c3a-8ceb-4f6dd0178dfc
spec:
  clusterIP: 192.168.161.1
  ports:
  - port: 80
    protocol: TCP
    targetPort: 8080
  selector:
    appGrid: echo
  sessionAffinity: None
  type: ClusterIP
status:
  loadBalancer: {}

为了实现 Kubernetes 零侵入,需要在 kube-proxy与apiserver 通信之间添加一层 wrapper,架构如下:

img

调用链路如下:

kube-proxy -> application-grid-wrapper -> lite-apiserver -> kube-apiserver

因此application-grid-wrapper会起服务,接受来自kube-proxy的请求,如下:

func (s *interceptorServer) Run(debug bool, bindAddress string, insecure bool, caFile, certFile, keyFile string) error {
    ...
    klog.Infof("Start to run interceptor server")
    /* filter
     */
    server := &http.Server{Addr: bindAddress, Handler: s.buildFilterChains(debug)}
    if insecure {
        return server.ListenAndServe()
    }
    ...
    server.TLSConfig = tlsConfig
    return server.ListenAndServeTLS("", "")
}
func (s *interceptorServer) buildFilterChains(debug bool) http.Handler {
    handler := http.Handler(http.NewServeMux())
    handler = s.interceptEndpointsRequest(handler)
    handler = s.interceptServiceRequest(handler)
    handler = s.interceptEventRequest(handler)
    handler = s.interceptNodeRequest(handler)
    handler = s.logger(handler)
    if debug {
        handler = s.debugger(handler)
    }
    return handler
}

这里会首先创建 interceptorServer,然后注册处理函数,由外到内依次如下:

  • debug:接受 debug 请求,返回 wrapper pprof 运行信息

  • logger:打印请求日志

  • node:接受 kube-proxy node GET(/api/v1/nodes/{node}) 请求,并返回node信息

  • event:接受 kube-proxy events POST (/events)请求,并将请求转发给 lite-apiserver

    func (s *interceptorServer) interceptEventRequest(handler http.Handler) http.Handler {
      return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
          if r.Method != http.MethodPost || !strings.HasSuffix(r.URL.Path, "/events") {
              handler.ServeHTTP(w, r)
              return
          }
          targetURL, _ := url.Parse(s.restConfig.Host)
          reverseProxy := httputil.NewSingleHostReverseProxy(targetURL)
          reverseProxy.Transport, _ = rest.TransportFor(s.restConfig)
          reverseProxy.ServeHTTP(w, r)
      })
    }
    
  • service:接受 kube-proxy service List&Watch(/api/v1/services) 请求,并根据 storageCache 内容返回(GetServices)

  • endpoint:接受 kube-proxy endpoint List&Watch(/api/v1/endpoints) 请求,并根据 storageCache内容返回 (GetEndpoints)

下面先重点分析 cache 部分的逻辑,然后再回过头来分析具体的 http handler List&Watch 处理逻辑

wrapper 为了实现拓扑感知,自己维护了一个 cache,包括:node,service,endpoint。可以看到在 setupInformers 中注册了这三类资源的处理函数:

type storageCache struct {
    // hostName is the nodeName of node which application-grid-wrapper deploys on
    hostName         string
    wrapperInCluster bool
    // mu lock protect the following map structure
    mu           sync.RWMutex
    servicesMap  map[types.NamespacedName]*serviceContainer
    endpointsMap map[types.NamespacedName]*endpointsContainer
    nodesMap     map[types.NamespacedName]*nodeContainer
    // service watch channel
    serviceChan chan<- watch.Event
    // endpoints watch channel
    endpointsChan chan<- watch.Event
}
...
func NewStorageCache(hostName string, wrapperInCluster bool, serviceNotifier, endpointsNotifier chan watch.Event) *storageCache {
    msc := &storageCache{
        hostName:         hostName,
        wrapperInCluster: wrapperInCluster,
        servicesMap:      make(map[types.NamespacedName]*serviceContainer),
        endpointsMap:     make(map[types.NamespacedName]*endpointsContainer),
        nodesMap:         make(map[types.NamespacedName]*nodeContainer),
        serviceChan:      serviceNotifier,
        endpointsChan:    endpointsNotifier,
    }
    return msc
}
...
func (s *interceptorServer) Run(debug bool, bindAddress string, insecure bool, caFile, certFile, keyFile string) error {
    ...
    if err := s.setupInformers(ctx.Done()); err != nil {
        return err
    }
    klog.Infof("Start to run interceptor server")
    /* filter
     */
    server := &http.Server{Addr: bindAddress, Handler: s.buildFilterChains(debug)}
    ...
    return server.ListenAndServeTLS("", "")
}
func (s *interceptorServer) setupInformers(stop <-chan struct{}) error {
    klog.Infof("Start to run service and endpoints informers")
    noProxyName, err := labels.NewRequirement(apis.LabelServiceProxyName, selection.DoesNotExist, nil)
    if err != nil {
        klog.Errorf("can't parse proxy label, %v", err)
        return err
    }
    noHeadlessEndpoints, err := labels.NewRequirement(v1.IsHeadlessService, selection.DoesNotExist, nil)
    if err != nil {
        klog.Errorf("can't parse headless label, %v", err)
        return err
    }
    labelSelector := labels.NewSelector()
    labelSelector = labelSelector.Add(*noProxyName, *noHeadlessEndpoints)
    resyncPeriod := time.Minute * 5
    client := kubernetes.NewForConfigOrDie(s.restConfig)
    nodeInformerFactory := informers.NewSharedInformerFactory(client, resyncPeriod)
    informerFactory := informers.NewSharedInformerFactoryWithOptions(client, resyncPeriod,
        informers.WithTweakListOptions(func(options *metav1.ListOptions) {
            options.LabelSelector = labelSelector.String()
        }))
    nodeInformer := nodeInformerFactory.Core().V1().Nodes().Informer()
    serviceInformer := informerFactory.Core().V1().Services().Informer()
    endpointsInformer := informerFactory.Core().V1().Endpoints().Informer()
    /*
     */
    nodeInformer.AddEventHandlerWithResyncPeriod(s.cache.NodeEventHandler(), resyncPeriod)
    serviceInformer.AddEventHandlerWithResyncPeriod(s.cache.ServiceEventHandler(), resyncPeriod)
    endpointsInformer.AddEventHandlerWithResyncPeriod(s.cache.EndpointsEventHandler(), resyncPeriod)
    go nodeInformer.Run(stop)
    go serviceInformer.Run(stop)
    go endpointsInformer.Run(stop)
    if !cache.WaitForNamedCacheSync("node", stop,
        nodeInformer.HasSynced,
        serviceInformer.HasSynced,
        endpointsInformer.HasSynced) {
        return fmt.Errorf("can't sync informers")
    }
    return nil
}
func (sc *storageCache) NodeEventHandler() cache.ResourceEventHandler {
    return &nodeHandler{cache: sc}
}
func (sc *storageCache) ServiceEventHandler() cache.ResourceEventHandler {
    return &serviceHandler{cache: sc}
}
func (sc *storageCache) EndpointsEventHandler() cache.ResourceEventHandler {
    return &endpointsHandler{cache: sc}
}

这里依次分析 NodeEventHandler,ServiceEventHandler 以及 EndpointsEventHandler,如下:

1、NodeEventHandler

NodeEventHandler 负责监听 node 资源相关 event,并将 node 以及 node Labels 添加到storageCache.nodesMap 中 (key 为 nodeName,value 为 node 以及 node labels)

func (nh *nodeHandler) add(node *v1.Node) {
    sc := nh.cache
    sc.mu.Lock()
    nodeKey := types.NamespacedName{Namespace: node.Namespace, Name: node.Name}
    klog.Infof("Adding node %v", nodeKey)
    sc.nodesMap[nodeKey] = &nodeContainer{
        node:   node,
        labels: node.Labels,
    }
    // update endpoints
    changedEps := sc.rebuildEndpointsMap()
    sc.mu.Unlock()
    for _, eps := range changedEps {
        sc.endpointsChan <- eps
    }
}
func (nh *nodeHandler) update(node *v1.Node) {
    sc := nh.cache
    sc.mu.Lock()
    nodeKey := types.NamespacedName{Namespace: node.Namespace, Name: node.Name}
    klog.Infof("Updating node %v", nodeKey)
    nodeContainer, found := sc.nodesMap[nodeKey]
    if !found {
        sc.mu.Unlock()
        klog.Errorf("Updating non-existed node %v", nodeKey)
        return
    }
    nodeContainer.node = node
    // return directly when labels of node stay unchanged
    if reflect.DeepEqual(node.Labels, nodeContainer.labels) {
        sc.mu.Unlock()
        return
    }
    nodeContainer.labels = node.Labels
    // update endpoints
    changedEps := sc.rebuildEndpointsMap()
    sc.mu.Unlock()
    for _, eps := range changedEps {
        sc.endpointsChan <- eps
    }
}
...

同时由于 node 的改变会影响 endpoint,因此会调用 rebuildEndpointsMap 刷新 storageCache.endpointsMap

// rebuildEndpointsMap updates all endpoints stored in storageCache.endpointsMap dynamically and constructs relevant modified events
func (sc *storageCache) rebuildEndpointsMap() []watch.Event {
    evts := make([]watch.Event, 0)
    for name, endpointsContainer := range sc.endpointsMap {
        newEps := pruneEndpoints(sc.hostName, sc.nodesMap, sc.servicesMap, endpointsContainer.endpoints, sc.wrapperInCluster)
        if apiequality.Semantic.DeepEqual(newEps, endpointsContainer.modified) {
            continue
        }
        sc.endpointsMap[name].modified = newEps
        evts = append(evts, watch.Event{
            Type:   watch.Modified,
            Object: newEps,
        })
    }
    return evts
}

rebuildEndpointsMap 是 cache 的核心函数,同时也是拓扑感知的算法实现:

// pruneEndpoints filters endpoints using serviceTopology rules combined by services topologyKeys and node labels
func pruneEndpoints(hostName string,
    nodes map[types.NamespacedName]*nodeContainer,
    services map[types.NamespacedName]*serviceContainer,
    eps *v1.Endpoints, wrapperInCluster bool) *v1.Endpoints {
    epsKey := types.NamespacedName{Namespace: eps.Namespace, Name: eps.Name}
    if wrapperInCluster {
        eps = genLocalEndpoints(eps)
    }
    // dangling endpoints
    svc, ok := services[epsKey]
    if !ok {
        klog.V(4).Infof("Dangling endpoints %s, %+#v", eps.Name, eps.Subsets)
        return eps
    }
    // normal service
    if len(svc.keys) == 0 {
        klog.V(4).Infof("Normal endpoints %s, %+#v", eps.Name, eps.Subsets)
        return eps
    }
    // topology endpoints
    newEps := eps.DeepCopy()
    for si := range newEps.Subsets {
        subnet := &newEps.Subsets[si]
        subnet.Addresses = filterConcernedAddresses(svc.keys, hostName, nodes, subnet.Addresses)
        subnet.NotReadyAddresses = filterConcernedAddresses(svc.keys, hostName, nodes, subnet.NotReadyAddresses)
    }
    klog.V(4).Infof("Topology endpoints %s: subnets from %+#v to %+#v", eps.Name, eps.Subsets, newEps.Subsets)
    return newEps
}
// filterConcernedAddresses aims to filter out endpoints addresses within the same node unit
func filterConcernedAddresses(topologyKeys []string, hostName string, nodes map[types.NamespacedName]*nodeContainer,
    addresses []v1.EndpointAddress) []v1.EndpointAddress {
    hostNode, found := nodes[types.NamespacedName{Name: hostName}]
    if !found {
        return nil
    }
    filteredEndpointAddresses := make([]v1.EndpointAddress, 0)
    for i := range addresses {
        addr := addresses[i]
        if nodeName := addr.NodeName; nodeName != nil {
            epsNode, found := nodes[types.NamespacedName{Name: *nodeName}]
            if !found {
                continue
            }
            if hasIntersectionLabel(topologyKeys, hostNode.labels, epsNode.labels) {
                filteredEndpointAddresses = append(filteredEndpointAddresses, addr)
            }
        }
    }
    return filteredEndpointAddresses
}
func hasIntersectionLabel(keys []string, n1, n2 map[string]string) bool {
    if n1 == nil || n2 == nil {
        return false
    }
    for _, key := range keys {
        val1, v1found := n1[key]
        val2, v2found := n2[key]
        if v1found && v2found && val1 == val2 {
            return true
        }
    }
    return false
}

算法逻辑如下:

  • 判断 endpoint 是否为 default kubernetes service,如果是,则将该 endpoint 转化为 wrapper 所在边缘节点的 lite-apiserver 地址(127.0.0.1)和端口(51003)
apiVersion: v1
kind: Endpoints
metadata:
  annotations:
    superedge.io/local-endpoint: 127.0.0.1
    superedge.io/local-port: "51003"
  name: kubernetes
  namespace: default
subsets:
- addresses:
  - ip: 172.31.0.60
  ports:
  - name: https
    port: xxx
    protocol: TCP
func genLocalEndpoints(eps *v1.Endpoints) *v1.Endpoints {
    if eps.Namespace != metav1.NamespaceDefault || eps.Name != MasterEndpointName {
        return eps
    }
    klog.V(4).Infof("begin to gen local ep %v", eps)
    ipAddress, e := eps.Annotations[EdgeLocalEndpoint]
    if !e {
        return eps
    }
    portStr, e := eps.Annotations[EdgeLocalPort]
    if !e {
        return eps
    }
    klog.V(4).Infof("get local endpoint %s:%s", ipAddress, portStr)
    port, err := strconv.ParseInt(portStr, 10, 32)
    if err != nil {
        klog.Errorf("parse int %s err %v", portStr, err)
        return eps
    }
    ip := net.ParseIP(ipAddress)
    if ip == nil {
        klog.Warningf("parse ip %s nil", ipAddress)
        return eps
    }
    nep := eps.DeepCopy()
    nep.Subsets = []v1.EndpointSubset{
        {
            Addresses: []v1.EndpointAddress{
                {
                    IP: ipAddress,
                },
            },
            Ports: []v1.EndpointPort{
                {
                    Protocol: v1.ProtocolTCP,
                    Port:     int32(port),
                    Name:     "https",
                },
            },
        },
    }
    klog.V(4).Infof("gen new endpoint complete %v", nep)
    return nep
}

这样做的目的是使边缘节点上的服务采用集群内 (InCluster) 方式访问的 apiserver 为本地的 lite-apiserver,而不是云端的 apiserver

  • 从 storageCache.servicesMap cache 中根据 endpoint 名称 (namespace/name) 取出对应 service,如果该 service 没有 topologyKeys 则无需做拓扑转化 (非service group)
func getTopologyKeys(objectMeta *metav1.ObjectMeta) []string {
    if !hasTopologyKey(objectMeta) {
        return nil
    }
    var keys []string
    keyData := objectMeta.Annotations[TopologyAnnotationsKey]
    if err := json.Unmarshal([]byte(keyData), &keys); err != nil {
        klog.Errorf("can't parse topology keys %s, %v", keyData, err)
        return nil
    }
    return keys
}
  • 调用 filterConcernedAddresses 过滤 endpoint.Subsets Addresses 以及 NotReadyAddresses,只保留同一个 service topologyKeys 中的 endpoint
// filterConcernedAddresses aims to filter out endpoints addresses within the same node unit
func filterConcernedAddresses(topologyKeys []string, hostName string, nodes map[types.NamespacedName]*nodeContainer,
    addresses []v1.EndpointAddress) []v1.EndpointAddress {
    hostNode, found := nodes[types.NamespacedName{Name: hostName}]
    if !found {
        return nil
    }
    filteredEndpointAddresses := make([]v1.EndpointAddress, 0)
    for i := range addresses {
        addr := addresses[i]
        if nodeName := addr.NodeName; nodeName != nil {
            epsNode, found := nodes[types.NamespacedName{Name: *nodeName}]
            if !found {
                continue
            }
            if hasIntersectionLabel(topologyKeys, hostNode.labels, epsNode.labels) {
                filteredEndpointAddresses = append(filteredEndpointAddresses, addr)
            }
        }
    }
    return filteredEndpointAddresses
}
func hasIntersectionLabel(keys []string, n1, n2 map[string]string) bool {
    if n1 == nil || n2 == nil {
        return false
    }
    for _, key := range keys {
        val1, v1found := n1[key]
        val2, v2found := n2[key]
        if v1found && v2found && val1 == val2 {
            return true
        }
    }
    return false
}

注意:如果 wrapper 所在边缘节点没有 service topologyKeys 标签,则也无法访问该 service

回到 rebuildEndpointsMap,在调用 pruneEndpoints 刷新了同一个拓扑域内的 endpoint 后,会将修改后的 endpoints 赋值给 storageCache.endpointsMap [endpoint]. modified (该字段记录了拓扑感知后修改的endpoints)。

func (nh *nodeHandler) add(node *v1.Node) {
    sc := nh.cache
    sc.mu.Lock()
    nodeKey := types.NamespacedName{Namespace: node.Namespace, Name: node.Name}
    klog.Infof("Adding node %v", nodeKey)
    sc.nodesMap[nodeKey] = &nodeContainer{
        node:   node,
        labels: node.Labels,
    }
    // update endpoints
    changedEps := sc.rebuildEndpointsMap()
    sc.mu.Unlock()
    for _, eps := range changedEps {
        sc.endpointsChan <- eps
    }
}
// rebuildEndpointsMap updates all endpoints stored in storageCache.endpointsMap dynamically and constructs relevant modified events
func (sc *storageCache) rebuildEndpointsMap() []watch.Event {
    evts := make([]watch.Event, 0)
    for name, endpointsContainer := range sc.endpointsMap {
        newEps := pruneEndpoints(sc.hostName, sc.nodesMap, sc.servicesMap, endpointsContainer.endpoints, sc.wrapperInCluster)
        if apiequality.Semantic.DeepEqual(newEps, endpointsContainer.modified) {
            continue
        }
        sc.endpointsMap[name].modified = newEps
        evts = append(evts, watch.Event{
            Type:   watch.Modified,
            Object: newEps,
        })
    }
    return evts
}

另外,如果 endpoints (拓扑感知后修改的 endpoints) 发生改变,会构建 watch event,传递给 endpoints handler (interceptEndpointsRequest) 处理

2、ServiceEventHandler

storageCache.servicesMap 结构体 key 为 service 名称 (namespace/name),value 为 serviceContainer,包含如下数据:

  • svc:service对象
  • keys:service topologyKeys

对于 service 资源的改动,这里用 Update event 说明:

func (sh *serviceHandler) update(service *v1.Service) {
    sc := sh.cache
    sc.mu.Lock()
    serviceKey := types.NamespacedName{Namespace: service.Namespace, Name: service.Name}
    klog.Infof("Updating service %v", serviceKey)
    newTopologyKeys := getTopologyKeys(&service.ObjectMeta)
    serviceContainer, found := sc.servicesMap[serviceKey]
    if !found {
        sc.mu.Unlock()
        klog.Errorf("update non-existed service, %v", serviceKey)
        return
    }
    sc.serviceChan <- watch.Event{
        Type:   watch.Modified,
        Object: service,
    }
    serviceContainer.svc = service
    // return directly when topologyKeys of service stay unchanged
    if reflect.DeepEqual(serviceContainer.keys, newTopologyKeys) {
        sc.mu.Unlock()
        return
    }
    serviceContainer.keys = newTopologyKeys
    // update endpoints
    changedEps := sc.rebuildEndpointsMap()
    sc.mu.Unlock()
    for _, eps := range changedEps {
        sc.endpointsChan <- eps
    }
}

逻辑如下:

  • 获取 service topologyKeys
  • 构建 service event.Modified event
  • 比较 service topologyKeys 与已经存在的是否有差异
  • 如果有差异则更新 topologyKeys,且调用 rebuildEndpointsMap刷新该 service 对应的 endpoints,如果 endpoints 发生变化,则构建 endpoints watch event,传递给 endpoints handler (interceptEndpointsRequest) 处理

3、EndpointsEventHandler

storageCache.endpointsMap 结构体 key 为 endpoints 名称(namespace/name),value 为 endpointsContainer,包含如下数据:

  • endpoints:拓扑修改前的 endpoints
  • modified:拓扑修改后的 endpoints

对于 endpoints 资源的改动,这里用 Update event 说明:

func (eh *endpointsHandler) update(endpoints *v1.Endpoints) {
    sc := eh.cache
    sc.mu.Lock()
    endpointsKey := types.NamespacedName{Namespace: endpoints.Namespace, Name: endpoints.Name}
    klog.Infof("Updating endpoints %v", endpointsKey)
    endpointsContainer, found := sc.endpointsMap[endpointsKey]
    if !found {
        sc.mu.Unlock()
        klog.Errorf("Updating non-existed endpoints %v", endpointsKey)
        return
    }
    endpointsContainer.endpoints = endpoints
    newEps := pruneEndpoints(sc.hostName, sc.nodesMap, sc.servicesMap, endpoints, sc.wrapperInCluster)
    changed := !apiequality.Semantic.DeepEqual(endpointsContainer.modified, newEps)
    if changed {
        endpointsContainer.modified = newEps
    }
    sc.mu.Unlock()
    if changed {
        sc.endpointsChan <- watch.Event{
            Type:   watch.Modified,
            Object: newEps,
        }
    }
}

逻辑如下:

  • 更新 endpointsContainer.endpoint 为新的 endpoints 对象
  • 调用 pruneEndpoints 获取拓扑刷新后的 endpoints
  • 比较 endpointsContainer.modified 与新刷新后的 endpoints
  • 如果有差异则更新 endpointsContainer.modified,则构建 endpoints watch event,传递给 endpoints handler (interceptEndpointsRequest) 处理

在分析完NodeEventHandler,ServiceEventHandler以及EndpointsEventHandler之后,我们回到具体的http handler List&Watch处理逻辑上,这里以endpoints为例:

func (s *interceptorServer) interceptEndpointsRequest(handler http.Handler) http.Handler {
    return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
        if r.Method != http.MethodGet || !strings.HasPrefix(r.URL.Path, "/api/v1/endpoints") {
            handler.ServeHTTP(w, r)
            return
        }
        queries := r.URL.Query()
        acceptType := r.Header.Get("Accept")
        info, found := s.parseAccept(acceptType, s.mediaSerializer)
        if !found {
            klog.Errorf("can't find %s serializer", acceptType)
            w.WriteHeader(http.StatusBadRequest)
            return
        }
        encoder := scheme.Codecs.EncoderForVersion(info.Serializer, v1.SchemeGroupVersion)
        // list request
        if queries.Get("watch") == "" {
            w.Header().Set("Content-Type", info.MediaType)
            allEndpoints := s.cache.GetEndpoints()
            epsItems := make([]v1.Endpoints, 0, len(allEndpoints))
            for _, eps := range allEndpoints {
                epsItems = append(epsItems, *eps)
            }
            epsList := &v1.EndpointsList{
                Items: epsItems,
            }
            err := encoder.Encode(epsList, w)
            if err != nil {
                klog.Errorf("can't marshal endpoints list, %v", err)
                w.WriteHeader(http.StatusInternalServerError)
                return
            }
            return
        }
        // watch request
        timeoutSecondsStr := r.URL.Query().Get("timeoutSeconds")
        timeout := time.Minute
        if timeoutSecondsStr != "" {
            timeout, _ = time.ParseDuration(fmt.Sprintf("%ss", timeoutSecondsStr))
        }
        timer := time.NewTimer(timeout)
        defer timer.Stop()
        flusher, ok := w.(http.Flusher)
        if !ok {
            klog.Errorf("unable to start watch - can't get http.Flusher: %#v", w)
            w.WriteHeader(http.StatusMethodNotAllowed)
            return
        }
        e := restclientwatch.NewEncoder(
            streaming.NewEncoder(info.StreamSerializer.Framer.NewFrameWriter(w),
                scheme.Codecs.EncoderForVersion(info.StreamSerializer, v1.SchemeGroupVersion)),
            encoder)
        if info.MediaType == runtime.ContentTypeProtobuf {
            w.Header().Set("Content-Type", runtime.ContentTypeProtobuf+";stream=watch")
        } else {
            w.Header().Set("Content-Type", runtime.ContentTypeJSON)
        }
        w.Header().Set("Transfer-Encoding", "chunked")
        w.WriteHeader(http.StatusOK)
        flusher.Flush()
        for {
            select {
            case <-r.Context().Done():
                return
            case <-timer.C:
                return
            case evt := <-s.endpointsWatchCh:
                klog.V(4).Infof("Send endpoint watch event: %+#v", evt)
                err := e.Encode(&evt)
                if err != nil {
                    klog.Errorf("can't encode watch event, %v", err)
                    return
                }
                if len(s.endpointsWatchCh) == 0 {
                    flusher.Flush()
                }
            }
        }
    })
}

逻辑如下:

  • 如果为List请求,则调用 GetEndpoints 获取拓扑修改后的 endpoints 列表,并返回
func (sc *storageCache) GetEndpoints() []*v1.Endpoints {
    sc.mu.RLock()
    defer sc.mu.RUnlock()
    epList := make([]*v1.Endpoints, 0, len(sc.endpointsMap))
    for _, v := range sc.endpointsMap {
        epList = append(epList, v.modified)
    }
    return epList
}
  • 如果为 Watch 请求,则不断从 storageCache.endpointsWatchCh 管道中接受 watch event,并返回

interceptServiceRequest 逻辑与 interceptEndpointsRequest 一致,这里不再赘述。

总结

  • SuperEdge service group 利用 application-grid-wrapper 实现拓扑感知,完成了同一个 nodeunit 内服务的闭环访问
  • service group 实现的拓扑感知和 Kubernetes 社区原生实现对比,有如下区别:
    • service group 拓扑 key 可以自定义,也即为 gridUniqKey,使用起来更加灵活;而社区实现目前只有三种选择:”kubernetes.io/hostname”,”topology.kubernetes.io/zone”以及”topology.kubernetes.io/region”
    • service group 只能填写一个拓扑 key,也即只能访问本拓扑域内有效的 endpoint,无法访问其它拓扑域的 endpoint;而社区可以通过 topologyKey 列表以及”*”实现其它备选拓扑域 endpoint 的访问
  • ServiceGrid Controller 负责根据 ServiceGrid 产生对应的 service(包含由serviceGrid.Spec.GridUniqKey构成的 topologyKeys annotations),逻辑和 DeploymentGrid Controller 整体一致,如下:
    • 创建并维护 service group 需要的若干 CRDs (包括:ServiceGrid)
    • 监听 ServiceGrid event,并填充 ServiceGrid 到工作队列中;循环从队列中取出ServiceGrid进行解析,创建并且维护对应的 service
    • 监听 service event,并将相关的 ServiceGrid 塞到工作队列中进行上述处理,协助上述逻辑达到整体 reconcile 逻辑
  • 为了实现Kubernetes零侵入,需要在 kube-proxy 与 apiserver 通信之间添加一层 wrapper,调用链路如下:kube-proxy -> application-grid-wrapper -> lite-apiserver -> kube-apiserver
  • application-grid-wrapper 是一个 http server,接受来自 kube-proxy 的请求,同时维护一个资源缓存,处理函数由外到内依次如下:
    • debug:接受 debug 请求,返回 wrapper pprof 运行信息
    • logger:打印请求日志
    • node:接受kube-proxy node GET (/api/v1/nodes/{node}) 请求,并返回 node 信息
    • event:接受 kube-proxy events POST (/events) 请求,并将请求转发给 lite-apiserver
    • service:接受 kube-proxy service List&Watch (/api/v1/services) 请求,并根据 storageCache 内容返回 (GetServices)。
    • endpoint:接受 kube-proxy endpoint List&Watch(/api/v1/endpoints) 请求,并根据storageCache 内容返回 (GetEndpoints)。
  • wrapper 为了实现拓扑感知,维护了一个资源cache,包括:node,service,endpoint,同时注册了相关 event 处理函数。核心拓扑算法逻辑为:调用 filterConcernedAddresses 过滤 endpoint.Subsets Addresses 以及 NotReadyAddresses,只保留同一个 service topologyKeys 中的 endpoint。另外,如果 wrapper 所在边缘节点没有 service topologyKeys 标签,则也无法访问该 service。
  • wrapper 接受来自 kube-proxy 对 endpoints 以及 service 的 List&Watch 请求,以 endpoints 为例:如果为List请求,则调用 GetEndpoints 获取拓扑修改后的 endpoints 列表,并返回;如果为 Watch 请求,则不断从 storageCache.endpointsWatchCh 管道中接受 watch event,并返回。service逻辑与 endpoints 一致。

展望

目前 SuperEdge service group 实现的拓扑算法功能更加灵活方便,如何处理与 Kubernetes 社区 service topology awareness 之间的关系值得探索,建议将 SuperEdge 拓扑算法推到社区

Refs