js引擎v8源码解析之对象第四篇(基于v8 0.1.5)

  • 2019 年 11 月 24 日
  • 笔记

1 SemiSpace

SemiSpace是管理新生代内存的类。

// SemiSpace in young generation  //  // A semispace is a contiguous chunk of memory. The mark-compact collector  // uses the memory in the from space as a marking stack when tracing live  // objects.    class SemiSpace  BASE_EMBEDDED {   public:    // Creates a space in the young generation. The constructor does not    // allocate memory from the OS.  A SemiSpace is given a contiguous chunk of    // memory of size 'capacity' when set up, and does not grow or shrink    // otherwise.  In the mark-compact collector, the memory region of the from    // space is used as the marking stack. It requires contiguous memory    // addresses.    SemiSpace(int initial_capacity, int maximum_capacity);      // Sets up the semispace using the given chunk.    bool Setup(Address start, int size);      // Tear down the space.  Heap memory was not allocated by the space, so it    // is not deallocated here.    void TearDown();      // True if the space has been set up but not torn down.    bool HasBeenSetup() { return start_ != NULL; }        bool Double();      // Returns the start address of the space.    Address low() { return start_; }    // Returns one past the end address of the space.    Address high() { return low() + capacity_; }      // Age mark accessors.    Address age_mark() { return ag偏移_mark_; }    void set_age_mark(Address mark) { age_mark_ = mark; }      // True if the address is in the address range of this semispace (not    // necessarily below the allocation pointer).    // 判断地址a是否在该对象管理的内存中,&address_mask即让a减去size-1的大小。如果等于start说明在管理范围内    bool Contains(Address a) {      return (reinterpret_cast<uint32_t>(a) & address_mask_)             == reinterpret_cast<uint32_t>(start_);    }      // True if the object is a heap object in the address range of this    // semispace (not necessarily below the allocation pointer).    // 类似上面的逻辑,但是堆对象低位是标记,判断时候需要处理一下,加SetUp    bool Contains(Object* o) {      return (reinterpret_cast<uint32_t>(o) & object_mask_) == object_expected_;    }      // The offset of an address from the begining of the space.    // 距离开始地址的p    int SpaceOffsetForAddress(Address addr) { return addr - low(); }     private:    // The current and maximum capacity of the space.    int capacity_;    int maximum_capacity_;      // The start address of the space.    Address start_;    // Used to govern object promotion during mark-compact collection.    Address age_mark_;      // Masks and comparison values to test for containment in this semispace.    // 见SetUp函数    uint32_t address_ma函数    uint32_t object_mask_;    uint32_t object_expected_;     public:    TRACK_MEMORY("SemiSpace")  };

下面是实现

SemiSpace::SemiSpace(int initial_capacity, int maximum_capacity)      : capacity_(initial_capacity), maximum_capacity_(maximum_capacity),        start_(NULL), age_mark_(NULL) {  }    // 设置管理的地址范围  bool SemiSpace::Setup(Address start, int size) {    ASSERT(size == maximum_capacity_);    // 判断地址的有效性    if (!MemoryAllocator::CommitBlock(start, capacity_)) return false;    // 管理地址空间的首地址    start_ = start;    // 低于有效范围的掩码,即保证相与后的值小于等于管理的地址范围    address_mask_ = ~(size - 1);    // 计算对象地址掩码,低位是标记位,判断的时候需要保留    object_mask_ = address_mask_ | kHeapObjectTag;    // 见contains函数,对象地址里低位是标记位,判断的时候需要带上    object_expected_ = reinterpret_cast<uint32_t>(start) | kHeapObjectTag;    // gc相关    age_mark_ = start_;    return true;  }  ja    void SemiSpace::TearDown() {    start_ = NULL;    capacity_ = 0;  }    // 扩容  bool SemiSpace::Double() {    if (!MemoryAllocator::CommitBlock(high(), capacity_)) return false;    capacity_ *= 2;    return true;  }

SemiSpace他自己不申请内存。他是负责管理某块内存的,内存申请在其他地方处理。

2 NewSpace

NewSpace也是管理新生代内存的类。新生代内存分为两半,一个是from区,一个是to区。具体的作用在分析gc的时候再探讨。

// The young generation space.  //  // The new space consists of a contiguous pair of semispaces.  It simply  // forwards most functions to the appropriate semispace.    class NewSpace : public Malloced {   public:      NewSpace(int initial_semispace_capacity, int maximum_semispace_capacity);      bool Setup(Address start, int size);    void TearDown();      // True if the space has been set up but not torn down.     bool HasBeenSetup() {      return to_space_->HasBeenSetup() && from_space_->HasBeenSetup();    }      // Flip the pair of spaces.    void Flip();      bool Double();      bool Contains(Address a) {      return (reinterpret_cast<uint32_t>(a) & address_mask_)          == reinterpret_cast<uint32_t>(start_);    }    bool Contains(Object* o) {      return (reinterpret_cast<uint32_t>(o) & object_mask_) == object_expected_;    }      // Return the allocated bytes in the active semispace.    // to区已分配的内存大小    int Size() { return top() - bottom(); }    // Return the current capacity of a semispace.    int Capacity() { return capacity_; }    // Return the available bytes without growing in the active semispace.    // to区还有多少内存可用    int Available() { return Capacity() - Size(); }      // Return the maximum capacity of a semispace.    int MaximumCapacity() { return maximum_capacity_; }      // Return the address of the allocation pointer in the active semispace.    // 当前已经分配出去的内存的末地址    Address top() { return allocation_info_.top; }    // Return the address of the first object in thkeyoctive semispace.    // to_space的管理的内存的首地址    Address bottom() { return to_space_->low(); }      // Get the age mark of the inactive semispace.    Address age_mark() { return from_space_->age_mark(); }    // Set the age mark in the active semispace.    void set_age_mark(Address mark) { to_space_->set_age_mark(mark); }      // The start address of the space and a bit mask. Anding an address in the    // new space with the mask will result in the start address.    Address start() { return start_; }    uint32_t mask() { return address_mask_; }      // The allocation top and limit addresses.    // 当前已分配的内存的末地址    Address* allocation_top_address() { return &allocation_info_.top; }    // 最大能分配的内存末地址    Address* allocation_limit_address() { return &allocation_info_.limit; }      Object* AllocateRaw(int size_in_bytes) {      return AllocateRawInternal(size_in_bytes, &allocation_info_);    }      Object* MCAllocateRaw(int size_in_bytes) {      return AllocateRawInternal(size_in_bytes, &mc_forwarding_info_);    }      void ResetAllocationInfo();      void MCResetRelocationInfo();      void MCCommitRelocationInfo();      // Get the extent of the inactive semispace (for use as a marking stack).    Address FromSpaceLow() { return from_space_->low(); }    Address FromSpaceHigh() { return from_space_->high(); }      // Get the extent of the active semispace (to sweep newly copied objects    // during a scavenge collection).    Address ToSpaceLow() { return to_space_->low(); }    Address ToSpaceHigh() { return to_space_->high(); }      // Offsets from the beginning of the semispaces.    int ToSpaceOffsetForAddress(Address a) {      return to_space_->SpaceOffsetForAddress(a);    }    int FromSpaceOffsetForAddress(Address a) {      return from_space_->SpaceOffsetForAddress(a);    }      bool ToSpaceContains(Object* o) { return to_space_->Contains(o); }    bool FromSpaceContains(Object* o) { return from_space_->Contains(o); }      bool ToSpaceContains(Address a) { return to_space_->Contains(a); }    bool FromSpaceContains(Address a) { return from_space_->Contains(a); }      void RecordAllocation(HeapObject* obj);    void RecordPromotion(HeapObject* obj);  #endif     private:    // The current and maximum capacities of a semispace.    int capacity_;    int maximum_capacity_;      // The semispaces.    SemiSpace* to_space_;    SemiSpace* from_space_;      // Start address and bit mask for containment testing.    Address start_;    uint32_t address_mask_;    uint32_t object_mask_;    uint32_t object_expected_;      // Allocation pointer and limit for normal allocation and allocation during    // mark-compact collection.    AllocationInfo allocation_info_;    AllocationInfo mc_forwarding_info_;      // Implementation of AllocateRaw and MCAllocateRaw.    inline Object* AllocateRawInternal(int size_in_bytes,                                       AllocationInfo* alloc_info);      friend class SemiSpaceIterator;     public:    TRACK_MEMORY("NewSpace")  };

newSpace的很多功能但是靠semiSpace来实现的。他负责内存的具体分配。但不负责内存的申请。还有些是和gc相关的功能,后续再分析。

// 分为两个space  NewSpace::NewSpace(int initial_semispace_capacity,                     int maximum_semispace_capacity) {    ASSERT(initial_semispace_capacity <= maximum_semispace_capacity);    ASSERT(IsPowerOf2(maximum_semispace_capacity));    maximum_capacity_ = maximum_semispace_capacity;    capacity_ = initial_semispace_capacity;    to_space_ = new SemiSpace(capacity_, maximum_capacity_);    from_space_ = new SemiSpace(capacity_, maximum_capacity_);  }    // 设置需要管理的地址空间,start是首地址,size是大小  bool NewSpace::Setup(Address start, int size) {    ASSERT(size == 2 * maximum_capacity_);    ASSERT(IsAddressAligned(start, size, 0));    // to区    if (to_space_ == NULL        || !to_space_->Setup(start, maximum_capacity_)) {      return false;    }    // from区,和to区一人一半    if (from_space_ == NULL        || !from_space_->Setup(start + maximum_capacity_, maximum_capacity_)) {      return false;    }    // 开始地址    start_ = start;    /*      address_mask的高位是地址的有效位,      size是只有一位为一,减一后一变成0,一右边      的全部0位变成1,然后取反,高位的0变成1,再加上size中本来的1,      即从左往右的1位地址有效位    */    address_mask_ = ~(size - 1);    // 参考semiSpace的分析    object_mask_ = address_mask_ | kHeapObjectTag;    object_expected_ = reinterpret_cast<uint32_t>(start) | kHeapObjectTag;    // 初始化管理的地址的信息    allocation_info_.top = to_space_->low();    allocation_info_.limit = to_space_->high();    mc_forwarding_info_.top = NULL;    mc_forwarding_info_.limit = NULL;      ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);    return true;  }    // 重置属性,不负责内存的释放  void NewSpace::TearDown() {      start_ = NULL;    capacity_ = 0;    allocation_info_.top = NULL;    allocation_info_.limit = NULL;    mc_forwarding_info_.top = NULL;    mc_forwarding_info_.limit = NULL;      if (to_space_ != NULL) {      to_space_->TearDown();      delete to_space_;      to_space_ = NULL;    }      if (from_space_ != NULL) {      from_space_->TearDown();      delete from_space_;      from_space_ = NULL;    }  }    // 翻转,在gc中调用  void NewSpace::Flip() {    SemiSpace* tmp = from_space_;    from_space_ = to_space_;    to_space_ = tmp;  }    // 扩容  bool NewSpace::Double() {    ASSERT(capacity_ <= maximum_capacity_ / 2);    // TODO(1240712): Failure to double the from space can result in    // semispaces of different sizes.  In the event of that failure, the    // to space doubling should be rolled back before returning false.    if (!to_space_->Double() || !from_space_->Double()) return false;    capacity_ *= 2;    // 从新扩容的地址开始分配内存,即老内存的末端。    allocation_info_.limit = to_space_->high();    ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);    return true;  }    // 重置管理内存分配的指针  void NewSpace::ResetAllocationInfo() {    allocation_info_.top = to_space_->low();    allocation_info_.limit = to_space_->high();    ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);  }      void NewSpace::MCResetRelocationInfo() {    mc_forwarding_info_.top = from_space_->low();    mc_forwarding_info_.limit = from_space_->high();    ASSERT_SEMISPACE_ALLOCATION_INFO(mc_forwarding_info_, from_space_);  }      void NewSpace::MCCommitRelocationInfo() {    // Assumes that the spaces have been flipped so that mc_forwarding_info_ is    // valid allocation info for the to space.    allocation_info_.top = mc_forwarding_info_.top;    allocation_info_.limit = to_space_->high();    ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_);  }

我们看到实现里没有很多具体的逻辑,只是对属性进行操作,或者把操作下发到semiSpace。下面看一下内存分配的函数。

// 分配内存  Object* NewSpace::AllocateRawInternal(int size_in_bytes,                                        AllocationInfo* alloc_info) {      Address new_top = alloc_info->top + size_in_bytes;    // 内存不够了    if (new_top > alloc_info->limit) {      return Failure::RetryAfterGC(size_in_bytes, NEW_SPACE);    }    // 地址+低一位的标记    Object* obj = HeapObject::FromAddress(alloc_info->top);    // 更新指针,指向下一块可分配的内存    alloc_info->top = new_top;  #ifdef DEBUG    SemiSpace* space =        (alloc_info == &allocation_info_) ? to_space_ : from_space_;    ASSERT(space->low() <= alloc_info->top           && alloc_info->top <= space->high()           && alloc_info->limit == space->high());  #endif    return obj;  }    }

内存管理,主要是通过开始指针、结束指针、指向当前可分配的内存的指针来进行管理。每次分配内存都会修改当前指针的值。