基于Spark的电影推荐系统(推荐系统~2)
- 2019 年 10 月 21 日
- 笔记
第四部分-推荐系统-数据ETL
- 本模块完成数据清洗,并将清洗后的数据load到Hive数据表里面去
前置准备:
spark +hive
vim $SPARK_HOME/conf/hive-site.xml <?xml version="1.0"?> <?xml-stylesheet type="text/xsl" href="configuration.xsl"?> <configuration> <property> <name>hive.metastore.uris</name> <value>thrift://hadoop001:9083</value> </property> </configuration>
- 启动Hive metastore server
[root@hadoop001 conf]# nohup hive –service metastore &
[root@hadoop001 conf]# netstat -tanp | grep 9083
tcp 0 0 0.0.0.0:9083 0.0.0.0:* LISTEN 24787/java
[root@hadoop001 conf]#
测试:
[root@hadoop001 ~]# spark-shell –master local[2]
scala> spark.sql("select * from liuge_db.dept").show; +------+-------+-----+ |deptno| dname| loc| +------+-------+-----+ | 1| caiwu| 3lou| | 2| renli| 4lou| | 3| kaifa| 5lou| | 4|qiantai| 1lou| | 5|lingdao|4 lou| +------+-------+-----+
==》保证Spark SQL 能够访问到Hive 的元数据才行。
然而我们采用的是standalone模式:需要启动master worker
[root@hadoop001 sbin]# pwd
/root/app/spark-2.4.3-bin-2.6.0-cdh5.7.0/sbin
[root@hadoop001 sbin]# ./start-all.sh
[root@hadoop001 sbin]# jps
26023 Master
26445 Worker
Spark常用端口
8080 spark.master.ui.port Master WebUI 8081 spark.worker.ui.port Worker WebUI 18080 spark.history.ui.port History server WebUI 7077 SPARK_MASTER_PORT Master port 6066 spark.master.rest.port Master REST port 4040 spark.ui.port Driver WebUI
这个时候打开:http://hadoop001:8080/
开始项目Coding
IDEA+Scala+Maven进行项目的构建
步骤一: 新建scala项目后,可以参照如下pom进行配置修改
<project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://maven.apache.org/maven-v4_0_0.xsd"> <modelVersion>4.0.0</modelVersion> <groupId>com.csylh</groupId> <artifactId>movie-recommend</artifactId> <version>1.0</version> <inceptionYear>2008</inceptionYear> <properties> <scala.version>2.11.8</scala.version> <spark.version>2.4.3</spark.version> </properties> <repositories> <repository> <id>scala-tools.org</id> <name>Scala-Tools Maven2 Repository</name> <url>http://scala-tools.org/repo-releases</url> </repository> </repositories> <dependencies> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-core_2.11</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.hadoop</groupId> <artifactId>hadoop-client</artifactId> <version>2.6.0</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-sql_2.11</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-hive_2.11</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-mllib_2.11</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming_2.11</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.spark</groupId> <artifactId>spark-streaming-kafka-0-8_2.11</artifactId> <version>${spark.version}</version> </dependency> <dependency> <groupId>org.apache.kafka</groupId> <artifactId>kafka-clients</artifactId> <version>1.1.1</version> </dependency> <!--// 0.10.2.1--> <dependency> <groupId>mysql</groupId> <artifactId>mysql-connector-java</artifactId> <version>5.1.39</version> </dependency> <dependency> <groupId>log4j</groupId> <artifactId>log4j</artifactId> <version>1.2.17</version> </dependency> </dependencies> <build> <!--<sourceDirectory>src/main/scala</sourceDirectory>--> <!--<testSourceDirectory>src/test/scala</testSourceDirectory>--> <plugins> <plugin> <!-- see http://davidb.github.com/scala-maven-plugin --> <groupId>net.alchim31.maven</groupId> <artifactId>scala-maven-plugin</artifactId> <version>3.1.3</version> <executions> <execution> <goals> <goal>compile</goal> <goal>testCompile</goal> </goals> <configuration> <args> <arg>-dependencyfile</arg> <arg>${project.build.directory}/.scala_dependencies</arg> </args> </configuration> </execution> </executions> </plugin> <plugin> <groupId>org.apache.maven.plugins</groupId> <artifactId>maven-surefire-plugin</artifactId> <version>2.13</version> <configuration> <useFile>false</useFile> <disableXmlReport>true</disableXmlReport> <!-- If you have classpath issue like NoDefClassError,... --> <!-- useManifestOnlyJar>false</useManifestOnlyJar --> <includes> <include>**/*Test.*</include> <include>**/*Suite.*</include> </includes> </configuration> </plugin> </plugins> </build> </project>
步骤二:新建com.csylh.recommend.dataclearer.SourceDataETLApp
import com.csylh.recommend.entity.{Links, Movies, Ratings, Tags} import org.apache.spark.sql.{SaveMode, SparkSession} /** * Description: * hadoop001 file:///root/data/ml/ml-latest 下的文件 * ====> SparkSQL ETL * ===> load data to Hive数据仓库 * * @Author: 留歌36 * @Date: 2019-07-12 13:48 */ object SourceDataETLApp{ def main(args: Array[String]): Unit = { // 面向SparkSession编程 val spark = SparkSession.builder() // .master("local[2]") .enableHiveSupport() //开启访问Hive数据, 要将hive-site.xml等文件放入Spark的conf路径 .getOrCreate() val sc = spark.sparkContext // 设置RDD的partitions 的数量一般以集群分配给应用的CPU核数的整数倍为宜, 4核8G ,设置为8就可以 // 问题一:为什么设置为CPU核心数的整数倍? // 问题二:数据倾斜,拿到数据大的partitions的处理,会消耗大量的时间,因此做数据预处理的时候,需要考量会不会发生数据倾斜 val minPartitions = 8 // 在生产环境中一定要注意设置spark.sql.shuffle.partitions,默认是200,及需要配置分区的数量 val shuffleMinPartitions = "8" spark.sqlContext.setConf("spark.sql.shuffle.partitions",shuffleMinPartitions) /** * 1 */ import spark.implicits._ val links = sc.textFile("file:///root/data/ml/ml-latest/links.txt",minPartitions) //DRIVER .filter(!_.endsWith(",")) //EXRCUTER .map(_.split(",")) //EXRCUTER .map(x => Links(x(0).trim.toInt, x(1).trim.toInt, x(2).trim.toInt)) //EXRCUTER .toDF() println("===============links===================:",links.count()) links.show() // 把数据写入到HDFS上 links.write.mode(SaveMode.Overwrite).parquet("/tmp/links") // 将数据从HDFS加载到Hive数据仓库中去 spark.sql("drop table if exists links") spark.sql("create table if not exists links(movieId int,imdbId int,tmdbId int) stored as parquet") spark.sql("load data inpath '/tmp/links' overwrite into table links") /** * 2 */ val movies = sc.textFile("file:///root/data/ml/ml-latest/movies.txt",minPartitions) .filter(!_.endsWith(",")) .map(_.split(",")) .map(x => Movies(x(0).trim.toInt, x(1).trim.toString, x(2).trim.toString)) .toDF() println("===============movies===================:",movies.count()) movies.show() // 把数据写入到HDFS上 movies.write.mode(SaveMode.Overwrite).parquet("/tmp/movies") // 将数据从HDFS加载到Hive数据仓库中去 spark.sql("drop table if exists movies") spark.sql("create table if not exists movies(movieId int,title String,genres String) stored as parquet") spark.sql("load data inpath '/tmp/movies' overwrite into table movies") /** * 3 */ val ratings = sc.textFile("file:///root/data/ml/ml-latest/ratings.txt",minPartitions) .filter(!_.endsWith(",")) .map(_.split(",")) .map(x => Ratings(x(0).trim.toInt, x(1).trim.toInt, x(2).trim.toDouble, x(3).trim.toInt)) .toDF() println("===============ratings===================:",ratings.count()) ratings.show() // 把数据写入到HDFS上 ratings.write.mode(SaveMode.Overwrite).parquet("/tmp/ratings") // 将数据从HDFS加载到Hive数据仓库中去 spark.sql("drop table if exists ratings") spark.sql("create table if not exists ratings(userId int,movieId int,rating Double,timestamp int) stored as parquet") spark.sql("load data inpath '/tmp/ratings' overwrite into table ratings") /** * 4 */ val tags = sc.textFile("file:///root/data/ml/ml-latest/tags.txt",minPartitions) .filter(!_.endsWith(",")) .map(x => rebuild(x)) // 注意这个坑的解决思路 .map(_.split(",")) .map(x => Tags(x(0).trim.toInt, x(1).trim.toInt, x(2).trim.toString, x(3).trim.toInt)) .toDF() tags.show() // 把数据写入到HDFS上 tags.write.mode(SaveMode.Overwrite).parquet("/tmp/tags") // 将数据从HDFS加载到Hive数据仓库中去 spark.sql("drop table if exists tags") spark.sql("create table if not exists tags(userId int,movieId int,tag String,timestamp int) stored as parquet") spark.sql("load data inpath '/tmp/tags' overwrite into table tags") } /** * 该方法是用于处理不符合规范的数据 * @param input * @return */ private def rebuild(input:String): String ={ val a = input.split(",") val head = a.take(2).mkString(",") val tail = a.takeRight(1).mkString val tag = a.drop(2).dropRight(1).mkString.replaceAll(""","") val output = head + "," + tag + "," + tail output } }
再有一些上面主类引用到的case 对象,你可以理解为Java 实体类
package com.csylh.recommend.entity /** * Description: 数据的schema * * @Author: 留歌36 * @Date: 2019-07-12 13:46 */ case class Links(movieId:Int,imdbId:Int,tmdbId:Int)
package com.csylh.recommend.entity /** * Description: TODO * * @Author: 留歌36 * @Date: 2019-07-12 14:09 */ case class Movies(movieId:Int,title:String,genres:String)
package com.csylh.recommend.entity /** * Description: TODO * * @Author: 留歌36 * @Date: 2019-07-12 14:10 */ case class Ratings(userId:Int,movieId:Int,rating:Double,timestamp:Int)
package com.csylh.recommend.entity /** * Description: TODO * * @Author: 留歌36 * @Date: 2019-07-12 14:11 */ case class Tags(userId:Int,movieId:Int,tag:String,timestamp:Int)
步骤三:将创建的项目进行打包上传到服务器
mvn clean package -Dmaven.test.skip=true
[root@hadoop001 ml]# ll -h movie-recommend-1.0.jar -rw-r--r--. 1 root root 156K 10月 20 13:56 movie-recommend-1.0.jar [root@hadoop001 ml]#
步骤四:提交运行上面的jar,编写shell脚本
[root@hadoop001 ml]# vim etl.sh
export HADOOP_CONF_DIR=/root/app/hadoop-2.6.0-cdh5.7.0/etc/hadoop
$SPARK_HOME/bin/spark-submit –class com.csylh.recommend.dataclearer.SourceDataETLApp –master spark://hadoop001:7077 –name SourceDataETLApp –driver-memory 10g –executor-memory 5g /root/data/ml/movie-recommend-1.0.jar
步骤五:sh etl.sh 即可
先把数据写入到HDFS上
创建Hive表
load 数据到表
sh etl.sh之前:
[root@hadoop001 ml]# hadoop fs -ls /tmp 19/10/20 19:26:58 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable Found 2 items drwx------ - root supergroup 0 2019-04-01 16:27 /tmp/hadoop-yarn drwx-wx-wx - root supergroup 0 2019-04-02 09:33 /tmp/hive [root@hadoop001 ml]# hadoop fs -ls /user/hive/warehouse 19/10/20 19:27:03 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable [root@hadoop001 ml]#
sh etl.sh之后:
这里的shell 是 ,spark on standalone,后面会spark on yarn。其实也没差,都可以
[root@hadoop001 ~]# hadoop fs -ls /tmp 19/10/20 19:43:17 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable Found 6 items drwx------ - root supergroup 0 2019-04-01 16:27 /tmp/hadoop-yarn drwx-wx-wx - root supergroup 0 2019-04-02 09:33 /tmp/hive drwxr-xr-x - root supergroup 0 2019-10-20 19:42 /tmp/links drwxr-xr-x - root supergroup 0 2019-10-20 19:42 /tmp/movies drwxr-xr-x - root supergroup 0 2019-10-20 19:43 /tmp/ratings drwxr-xr-x - root supergroup 0 2019-10-20 19:43 /tmp/tags [root@hadoop001 ~]# hadoop fs -ls /user/hive/warehouse 19/10/20 19:43:32 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable Found 4 items drwxr-xr-x - root supergroup 0 2019-10-20 19:42 /user/hive/warehouse/links drwxr-xr-x - root supergroup 0 2019-10-20 19:42 /user/hive/warehouse/movies drwxr-xr-x - root supergroup 0 2019-10-20 19:43 /user/hive/warehouse/ratings drwxr-xr-x - root supergroup 0 2019-10-20 19:43 /user/hive/warehouse/tags [root@hadoop001 ~]#
这样我们就把数据etl到我们的数据仓库里了,接下来,基于这份基础数据做数据加工
有任何问题,欢迎留言一起交流~~
更多文章:基于Spark的电影推荐系统:https://blog.csdn.net/liuge36/column/info/29285