高通电源管理qpnp-vm-bms驱动

  • 2019 年 10 月 11 日
  • 笔记

1. compatible节点:

qpnp-vm-bms.c使用来控制电池曲线的和BMS功能的,其compatible节点是"qcom,qpnp-vm-bms"

2. probe函数:

qpnp_vm_bms_probe函数如下:

static int qpnp_vm_bms_probe(struct spmi_device *spmi)  {      struct qpnp_bms_chip *chip;      struct device_node *revid_dev_node;      int rc, vbatt = 0;        chip = devm_kzalloc(&spmi->dev, sizeof(*chip), GFP_KERNEL);      if (!chip) {          pr_err("kzalloc() failed.n");          return -ENOMEM;      }        //获取ADC的值,ADC是电流的大小,绑定vadc,并且获取温度,设备列表      rc = bms_get_adc(chip, spmi);      if (rc < 0) {          pr_err("Failed to get adc rc=%dn", rc);          return rc;      }        //指向revision外围节点的phandle,vm-bus需要配置这个节点      revid_dev_node = of_parse_phandle(spmi->dev.of_node,                          "qcom,pmic-revid", 0);      if (!revid_dev_node) {          pr_err("Missing qcom,pmic-revid propertyn");          return -EINVAL;      }        //返回pmic的修订信息      chip->revid_data = get_revid_data(revid_dev_node);      if (IS_ERR(chip->revid_data)) {          pr_err("revid error rc = %ldn", PTR_ERR(chip->revid_data));          return -EINVAL;      }      if ((chip->revid_data->pmic_subtype == PM8916_V2P0_SUBTYPE) &&                  chip->revid_data->rev4 == PM8916_V2P0_REV4)          chip->workaround_flag |= WRKARND_PON_OCV_COMP;        //查看是否是热启动的,热启动就是在不关闭设备的情况下,重启电脑      rc = qpnp_pon_is_warm_reset();      if (rc < 0) {          pr_err("Error reading warm reset status rc=%dn", rc);          return rc;      }      chip->warm_reset = !!rc;        //解析spmi设备的内容,并且在其中寻找它的中断基地址      rc = parse_spmi_dt_properties(chip, spmi);      if (rc) {          pr_err("Error registering spmi resource rc=%dn", rc);          return rc;      }        //解析电池的参数,如v-cutoff-uv,关机电压,它不会读qcom的内容,会直接读qcom,后面的内容会有仔细说      rc = parse_bms_dt_properties(chip);      if (rc) {          pr_err("Unable to read all bms properties, rc = %dn", rc);          return rc;      }        //查询错误的原因      if (chip->dt.cfg_disable_bms) {          pr_info("VMBMS disabled (disable-bms = 1)n");          rc = qpnp_masked_write_base(chip, chip->base + EN_CTL_REG,                              BMS_EN_BIT, 0);          if (rc)              pr_err("Unable to disable VMBMS rc=%dn", rc);          return -ENODEV;      }        //读取存在pm?PM里读出来的未经修正的原始数据?      rc = qpnp_read_wrapper(chip, chip->revision,                  chip->base + REVISION1_REG, 2);      if (rc) {          pr_err("Error reading version register rc=%dn", rc);          return rc;      }        pr_debug("BMS version: %hhu.%hhun",              chip->revision[1], chip->revision[0]);        dev_set_drvdata(&spmi->dev, chip);      device_init_wakeup(&spmi->dev, 1);      mutex_init(&chip->bms_data_mutex);      mutex_init(&chip->bms_device_mutex);      mutex_init(&chip->last_soc_mutex);      mutex_init(&chip->state_change_mutex);      init_waitqueue_head(&chip->bms_wait_q);     //初始化队列        /* read battery-id and select the battery profile */      //设置电池数据,也就是电池曲线      rc = set_battery_data(chip);      if (rc) {          pr_err("Unable to read battery data %dn", rc);          goto fail_init;      }        /* set the battery profile */      //设置电池的配置文件,其实也就是配置刚刚设置好的全局变量了      rc = config_battery_data(chip->batt_data);      if (rc) {          pr_err("Unable to config battery data %dn", rc);          goto fail_init;      }        //初始化wakeup_source,内核睡眠机制      wakeup_source_init(&chip->vbms_lv_wake_source.source, "vbms_lv_wake");      wakeup_source_init(&chip->vbms_cv_wake_source.source, "vbms_cv_wake");      wakeup_source_init(&chip->vbms_soc_wake_source.source, "vbms_soc_wake");      //初始化工作队列      INIT_DELAYED_WORK(&chip->monitor_soc_work, monitor_soc_work);      INIT_DELAYED_WORK(&chip->voltage_soc_timeout_work,                      voltage_soc_timeout_work);      //初始化配置状态,各种状态      bms_init_defaults(chip);      //这一句看不懂了,可能是电池BMS算法用来读取硬件配置的      bms_load_hw_defaults(chip);        //通过判断power_supply里面的函数来确定是否是正在充电的状态      is_bat_pres_ght =(is_battery_present(chip));        pr_err("is_bat_pres_ght =%dn",is_bat_pres_ght);      ///if (is_battery_present(chip)) {      //如果电池正在充电      if (is_bat_pres_ght) {          //设置电池的设置低电(高电,高温,低温)的阈值,也就是电池低电关机          rc = setup_vbat_monitoring(chip);          if (rc) {              pr_err("fail to configure vbat monitoring rc=%dn",                      rc);              goto fail_setup;          }      }        //请求一些相应的中断BMS      rc = bms_request_irqs(chip);      if (rc) {          pr_err("error requesting bms irqs, rc = %dn", rc);          goto fail_irq;      }        //电池一些常规的检测,主要从PMIC上读到的相关信息      //电池的插入状态检测,判断手段是如果当前状态和之前状态不一样就判断电池拔出,并且确定电池是否存在,否则重置      battery_insertion_check(chip);      //电池状态检测      battery_status_check(chip);        /* character device to pass data to the userspace */      //向上层注册字符设备      rc = register_bms_char_device(chip);      if (rc) {          pr_err("Unable to regiter '/dev/vm_bms' rc=%dn", rc);          goto fail_bms_device;      }        the_chip = chip;      //这个也很重要,我们从上节知道,初值last_ocv_soc是非常重要的,决定着后面的soc估值算法,计算估值电压      calculate_initial_soc(chip);      if (chip->dt.cfg_battery_aging_comp) {          rc = calculate_initial_aging_comp(chip);          if (rc)              pr_err("Unable to calculate initial aging data rc=%dn",                      rc);      }        //设置和注册电池的power supply      /* setup & register the battery power supply */      chip->bms_psy.name = "bms";      chip->bms_psy.type = POWER_SUPPLY_TYPE_BMS;      chip->bms_psy.properties = bms_power_props;      chip->bms_psy.num_properties = ARRAY_SIZE(bms_power_props);      chip->bms_psy.get_property = qpnp_vm_bms_power_get_property;      chip->bms_psy.set_property = qpnp_vm_bms_power_set_property;      chip->bms_psy.external_power_changed = qpnp_vm_bms_ext_power_changed;      chip->bms_psy.property_is_writeable = qpnp_vm_bms_property_is_writeable;      chip->bms_psy.supplied_to = qpnp_vm_bms_supplicants;      chip->bms_psy.num_supplicants = ARRAY_SIZE(qpnp_vm_bms_supplicants);        //power_supply注册      rc = power_supply_register(chip->dev, &chip->bms_psy);      if (rc < 0) {          pr_err("power_supply_register bms failed rc = %dn", rc);          goto fail_psy;      }      chip->bms_psy_registered = true;        rc = get_battery_voltage(chip, &vbatt);      if (rc) {          pr_err("error reading vbat_sns adc channel=%d, rc=%dn",                              VBAT_SNS, rc);          goto fail_get_vtg;      }        chip->debug_root = debugfs_create_dir("qpnp_vmbms", NULL);      if (!chip->debug_root)          pr_err("Couldn't create debug dirn");        if (chip->debug_root) {          struct dentry *ent;            ent = debugfs_create_file("bms_data", S_IFREG | S_IRUGO,                        chip->debug_root, chip,                        &bms_data_debugfs_ops);          if (!ent)              pr_err("Couldn't create bms_data debug filen");            ent = debugfs_create_file("bms_config", S_IFREG | S_IRUGO,                        chip->debug_root, chip,                        &bms_config_debugfs_ops);          if (!ent)              pr_err("Couldn't create bms_config debug filen");            ent = debugfs_create_file("bms_status", S_IFREG | S_IRUGO,                        chip->debug_root, chip,                        &bms_status_debugfs_ops);          if (!ent)              pr_err("Couldn't create bms_status debug filen");      }          //这里启动工作队列,绝大部分的工作内容都是在这里完成的      schedule_delayed_work(&chip->monitor_soc_work, 0);        /*       * schedule a work to check if the userspace vmbms module       * has registered. Fall-back to voltage-based-soc reporting       * if it has not.       */         //      schedule_delayed_work(&chip->voltage_soc_timeout_work,          msecs_to_jiffies(chip->dt.cfg_voltage_soc_timeout_ms));        pr_info("probe success: soc=%d vbatt=%d ocv=%d warm_reset=%dn",                      get_prop_bms_capacity(chip), vbatt,                      chip->last_ocv_uv, chip->warm_reset);        return rc;    fail_get_vtg:      power_supply_unregister(&chip->bms_psy);  fail_psy:      device_destroy(chip->bms_class, chip->dev_no);      cdev_del(&chip->bms_cdev);      unregister_chrdev_region(chip->dev_no, 1);  fail_bms_device:      chip->bms_psy_registered = false;  fail_irq:      reset_vbat_monitoring(chip);  fail_setup:      wakeup_source_trash(&chip->vbms_lv_wake_source.source);      wakeup_source_trash(&chip->vbms_cv_wake_source.source);      wakeup_source_trash(&chip->vbms_soc_wake_source.source);  fail_init:      mutex_destroy(&chip->bms_data_mutex);      mutex_destroy(&chip->last_soc_mutex);      mutex_destroy(&chip->state_change_mutex);      mutex_destroy(&chip->bms_device_mutex);      the_chip = NULL;        return rc;  }

2.1 parse_bms_dt_properties()函数

在这里我们详细分析一下各个节点的内容,这里就挑几个比较重要的看看:(详细可以参考设备树里面的内容)

  • v-cutoff-uv:如修改关机电压,除了修改这里,还需要修改电池曲线数据的qcom,v-cutoff-uv,其实最好是用电池曲线数据里的
  • max-voltage-uv:电池最大的电压,单位为毫伏
  • qcom,r-conn-mohm :连接器的电阻
  • s1-sample-interval-ms:状态s1下累加器的采样(毫秒)。(即)累加器充满vbat样本的速率。最小值=0最大值=2550ms。
  • resume-soc:当充满的电池百分比低于此值,则重新开始充电。
  • volatge-soc-timeout-ms:如果没有使用VMBMS算法来计算SOC,模块在此时间后基于SOC来报告电压。
  • low-temp-threshold:当温度阈值低于此值,禁用IBAT求取平均值和UUC(不可用电量)平滑功能,如没指定默认为0,我们这里没有指定。
  • qcom,ignore-shutdown-soc:有些不看翻译对大家都好;
  • qcom,use-voltage-soc :BMS根据此项的值来决定是否采用基于电压的SOC来替代基于库伦电量计的方式
  • qcom,use-reported-soc :此项使能reported_soc逻辑,而且要定义qcom,resume-soc为一个合适的值,BMS也需要控制充电、停止充电和重新充电。高通给出的代码默认是定义qcom,use-reported-soc,但我们核心板厂家注释掉此项,并增加qcom,report-charger-eoc
  • qcom,report-charger-eoc: 指示BMS需要通知EOC(充电结束)给充电器
  • qcom,disable-bms :此属性用于关闭VM BMS硬件模块

2.2 set_battery_data()函数

这一部分内容就是设置电池曲线内容:

下面就是电池曲线的详细内容,不仔细说了:

static int set_battery_data(struct qpnp_bms_chip *chip)  {      int64_t battery_id;      int rc = 0;      struct bms_battery_data *batt_data;      struct device_node *node;        //里面的内容通过读取ADC来获取ID号      battery_id = read_battery_id(chip);      if (battery_id < 0) {          pr_err("cannot read battery id err = %lldn", battery_id);          return battery_id;      }      node = of_find_node_by_name(chip->spmi->dev.of_node,                      "qcom,battery-data");      if (!node) {              pr_err("No available batterydatan");              return -EINVAL;      }        batt_data = devm_kzalloc(chip->dev,              sizeof(struct bms_battery_data), GFP_KERNEL);      if (!batt_data) {          pr_err("Could not alloc battery datan");          return -EINVAL;      }        batt_data->fcc_temp_lut = devm_kzalloc(chip->dev,          sizeof(struct single_row_lut), GFP_KERNEL);      batt_data->pc_temp_ocv_lut = devm_kzalloc(chip->dev,              sizeof(struct pc_temp_ocv_lut), GFP_KERNEL);      batt_data->rbatt_sf_lut = devm_kzalloc(chip->dev,                  sizeof(struct sf_lut), GFP_KERNEL);      batt_data->ibat_acc_lut = devm_kzalloc(chip->dev,                  sizeof(struct ibat_temp_acc_lut), GFP_KERNEL);        batt_data->max_voltage_uv = -1;      batt_data->cutoff_uv = -1;      batt_data->iterm_ua = -1;        /*       * if the alloced luts are 0s, of_batterydata_read_data ignores       * them.       */      rc = of_batterydata_read_data(node, batt_data, battery_id);      if (rc || !batt_data->pc_temp_ocv_lut          || !batt_data->fcc_temp_lut          || !batt_data->rbatt_sf_lut          || !batt_data->ibat_acc_lut) {          pr_err("battery data load failedn");          devm_kfree(chip->dev, batt_data->fcc_temp_lut);          devm_kfree(chip->dev, batt_data->pc_temp_ocv_lut);          devm_kfree(chip->dev, batt_data->rbatt_sf_lut);          devm_kfree(chip->dev, batt_data->ibat_acc_lut);          devm_kfree(chip->dev, batt_data);          return rc;      }        if (batt_data->pc_temp_ocv_lut == NULL) {          pr_err("temp ocv lut table has not been loadedn");          devm_kfree(chip->dev, batt_data->fcc_temp_lut);          devm_kfree(chip->dev, batt_data->pc_temp_ocv_lut);          devm_kfree(chip->dev, batt_data->rbatt_sf_lut);          devm_kfree(chip->dev, batt_data->ibat_acc_lut);          devm_kfree(chip->dev, batt_data);            return -EINVAL;      }        /* check if ibat_acc_lut is valid */      if (!batt_data->ibat_acc_lut->rows) {          pr_info("ibat_acc_lut not presentn");          devm_kfree(chip->dev, batt_data->ibat_acc_lut);          batt_data->ibat_acc_lut = NULL;      }        /* Override battery properties if specified in the battery profile */      if (batt_data->max_voltage_uv >= 0)          chip->dt.cfg_max_voltage_uv = batt_data->max_voltage_uv;      if (batt_data->cutoff_uv >= 0)          chip->dt.cfg_v_cutoff_uv = batt_data->cutoff_uv;        chip->batt_data = batt_data;        return 0;  }

of_batterydata_read_data函数中有一个返回值:

of_batterydata_read_data->  of_batterydata_load_battery_data

of_batterydata_load_battery_data函数中有配置电池曲线的东西;

2.3 高通电量计

术语

全称

注释

FCC

Full-Charge Capacity

满电荷电量

UC

Remaining capacity

RC 剩余电量

CC

Coulumb counter

电量计

UUC

Unusable capacity

不可用电量

RUC

Remaining usable capacity //

RUC=RC-CC-UUC RUC=RC-CC-UUC,剩余可用电量

SoC

State of charge

电量百分比

OCV

Open circuit voltage

开路电压,电池在开路状态下的端电压称为开路电压

SOC=(RC-CC-UUC)/(FCC-UUC)

以下是各个变量的计算方法:

2.3.1 FCC:

在校准的电池profile中有定义,会随温度有变化;

static struct single_row_lut fcc_temp = {   .x  = {-20, 0, 25, 40, 60},   .y  = {3193, 3190, 3190, 3180, 3183},   .cols = 5  }

对应电池曲线的qcom,fcc-temp-lut;

2.3.2 pc-temp-ocv-lut:

qcom,pc-temp-ocv-lut,为温度、SOC对应得电压表,PMU8909获取的电压值,通过查该表,在温度和电压下,可得到当前的SOC。

对应电池曲线的qcom,pc-temp-ocv-lut

2.3.3 rbatt-sf-lut:

rbatt-sf-lut,为温度、soc对应的电池内阻表,这里主要考虑内阻的影响,对OCV的修正,new_ocv=ocv+rbatt(内阻)*current(当前电流)。

对应电池曲线的qcom,rbatt-sf-lut

2.3.3 ibat-acc-luit

ibat-acc-luit,为温度、电流对应的acc表,这两个是起到修正SOC的作用

对应电池曲线的qcom, ibat-acc-luit

2.3.4 计算公式

soc_uuc = ((fcc - acc) * 100) / fcc,

//fcc在qcom,fcc-temp-lut查表可知、acc在qcom, ibat-acc-luit查表可知

soc_acc = DIV_ROUND_CLOSEST(100 * (soc_ocv - soc_uuc),(100 - soc_uuc));

//最终soc_acc,为上报的SOC.soc_ocv则是在qcom,pc-temp-ocv-lut查表可知

2.3.5 BMS算法

会上报事件uevent,当HAL层,收到消息,然后调用getprop的方法,获取相关的参数,如,电阻、电流、fcc、acc等,来估算出last_ocv_uv,然后调用setprop,把该值设下去,并启动工作线程,根据last_ocv_uv,查表得到soc,并经过修正SOC,并再次上报事件,循环下去。这个估值算法,我猜可能是一套学习算法,具体的没有源码,不清楚,只知道它把算法变为.bin文件,用了binder机制,作为服务一直运行。

我们如何知道monitor_soc_work函数不断的运行呢?

原因在于:

static void monitor_soc_work(struct work_struct *work) {      ......      if ((chip->last_soc != chip->calculated_soc) ||                      chip->dt.cfg_use_voltage_soc)      schedule_delayed_work(&chip->monitor_soc_work,      msecs_to_jiffies(get_calculation_delay_ms(chip)));  }

2.3.6 分析如何确定初始的last_ocv_uv:

static int calculate_initial_soc(struct qpnp_bms_chip *chip)  {      ........      ........      //读当前电池温度      rc = get_batt_therm(chip, &batt_temp);      ............      //读PON OCV      rc = read_and_update_ocv(chip, batt_temp, true);      ..........      //读关机保存的soc和last_soc_uv        rc = read_shutdown_ocv_soc(chip);        //这里判断是使用估计soc还是估值soc。如果chip->warm_reset 为真      if (chip->warm_reset) {          if (chip->shutdown_soc_invalid) { //这个是dtsi的一个配置选项,若没有配置,                          //则不使用关机soc              est_ocv = estimate_ocv(chip); //估值soc              chip->last_ocv_uv = est_ocv;          } else {              chip->last_ocv_uv = chip->shutdown_ocv;//使用关机的soc和ocv              pr_err("Hyan %d : set chip->last_ocv_uv = %dn", __LINE__, chip->last_ocv_uv);              chip->last_soc = chip->shutdown_soc;              chip->calculated_soc = lookup_soc_ocv(chip,                          chip->shutdown_ocv, batt_temp);          }      } else {            if (chip->workaround_flag & WRKARND_PON_OCV_COMP)              adjust_pon_ocv(chip, batt_temp);             /* !warm_reset use PON OCV only if shutdown SOC is invalid */          chip->calculated_soc = lookup_soc_ocv(chip,                      chip->last_ocv_uv, batt_temp);          if (!chip->shutdown_soc_invalid &&              (abs(chip->shutdown_soc - chip->calculated_soc) <                  chip->dt.cfg_shutdown_soc_valid_limit)) {              chip->last_ocv_uv = chip->shutdown_ocv;              chip->last_soc = chip->shutdown_soc;              chip->calculated_soc = lookup_soc_ocv(chip,                          chip->shutdown_ocv, batt_temp);//使用估值soc            } else {              chip->shutdown_soc_invalid = true; //使用关机soc            }      }      .............      ............  }        //得到PON OCV      rc = read_and_update_ocv(chip, batt_temp, true);          ocv_uv = convert_vbatt_raw_to_uv(chip, ocv_data, is_pon_ocv);                  uv = vadc_reading_to_uv(reading, true); //读ADC值                  uv = adjust_vbatt_reading(chip, uv);   //转化为soc_uv                  rc = qpnp_vbat_sns_comp_result(chip->vadc_dev, &uv, is_pon_ocv); //根据IC的类型,进行温度补偿      //从寄存器中读到储存的soc和ocv      read_shutdown_ocv_soc          rc = qpnp_read_wrapper(chip, (u8 *)&stored_ocv,                  chip->base + BMS_OCV_REG, 2);          rc = qpnp_read_wrapper(chip, &stored_soc, chip->base + BMS_SOC_REG, 1);        adjust_pon_ocv(struct qpnp_bms_chip *chip, int batt_temp)          rc = qpnp_vadc_read(chip->vadc_dev, DIE_TEMP, &result);          pc = interpolate_pc(chip->batt_data->pc_temp_ocv_lut,                      batt_temp, chip->last_ocv_uv / 1000); //根据ocv和temp,查表得PC(soc)。          rbatt_mohm = get_rbatt(chip, pc, batt_temp); //根据soc和temp,得电池内阻值          /* convert die_temp to DECIDEGC */          die_temp = (int)result.physical / 100;          current_ma = interpolate_current_comp(die_temp);  //当前电流          delta_uv = rbatt_mohm * current_ma;          chip->last_ocv_uv += delta_uv;   //修正last_ocv_uv        //这个函数主要根据last_ocv_uv,计算出soc的      lookup_soc_ocv(struct qpnp_bms_chip *chip, int ocv_uv, int batt_temp)              //查表得到soc_ocv,soc_cutoff              soc_ocv = interpolate_pc(chip->batt_data->pc_temp_ocv_lut,                      batt_temp, ocv_uv / 1000);              soc_cutoff = interpolate_pc(chip->batt_data->pc_temp_ocv_lut,                  batt_temp, chip->dt.cfg_v_cutoff_uv / 1000);                soc_final = DIV_ROUND_CLOSEST(100 * (soc_ocv - soc_cutoff),                              (100 - soc_cutoff));                if (batt_temp > chip->dt.cfg_low_temp_threshold)                  iavg_ma = calculate_uuc_iavg(chip);              else                  iavg_ma = chip->current_now / 1000;              //查表得到FCC,ACC              fcc = interpolate_fcc(chip->batt_data->fcc_temp_lut,                                  batt_temp);              acc = interpolate_acc(chip->batt_data->ibat_acc_lut,                              batt_temp, iavg_ma);              //计算出UUC              soc_uuc = ((fcc - acc) * 100) / fcc;                if (batt_temp > chip->dt.cfg_low_temp_threshold)                  soc_uuc = adjust_uuc(chip, soc_uuc);              //得到soc_acc              soc_acc = DIV_ROUND_CLOSEST(100 * (soc_ocv - soc_uuc),                              (100 - soc_uuc));                soc_final = soc_acc;   //这个为上报的soc              chip->last_acc = acc;

在这里获取last_ocv_uv,温度;

2.3.7 工作队列monitor_soc_work

static void monitor_soc_work(struct work_struct *work)  {      struct qpnp_bms_chip *chip = container_of(work,                  struct qpnp_bms_chip,                  monitor_soc_work.work);      int rc, new_soc = 0, batt_temp;        bms_stay_awake(&chip->vbms_soc_wake_source);        //计算上次工作队列和这次工作队列的差值      calculate_delta_time(&chip->tm_sec, &chip->delta_time_s);      pr_debug("elapsed_time=%dn", chip->delta_time_s);        mutex_lock(&chip->last_soc_mutex);        //电池不存在,报100%电量      if (!is_battery_present(chip)) {          /* if battery is not preset report 100% SOC */          pr_debug("battery gone, reporting 100n");          chip->last_soc_invalid = true;          chip->last_soc = -EINVAL;          new_soc = 100;      } else {          //检测电池电压          battery_voltage_check(chip);          //假设这个qcom,use-voltage-soc节点打开,就使用电压来计算soc          if (chip->dt.cfg_use_voltage_soc) {              //通过电压计算soc              calculate_soc_from_voltage(chip);          } else {              //获取电池的温度              rc = get_batt_therm(chip, &batt_temp);              if (rc < 0) {                  pr_err("Unable to read batt temp rc=%d, using default=%dn",                              rc, BMS_DEFAULT_TEMP);                  batt_temp = BMS_DEFAULT_TEMP;              }                if (chip->last_soc_invalid) {                  chip->last_soc_invalid = false;                  chip->last_soc = -EINVAL;              }                //这里使用last_ocv_uv算出soc的              new_soc = lookup_soc_ocv(chip, chip->last_ocv_uv,                                  batt_temp);              /* clamp soc due to BMS hw/sw immaturities */              new_soc = clamp_soc_based_on_voltage(chip, new_soc);                  //上次的电压不等于这次的电压              if (chip->calculated_soc != new_soc) {                  pr_debug("SOC changed! new_soc=%d prev_soc=%dn",                          new_soc, chip->calculated_soc);                  chip->calculated_soc = new_soc;                  /*                   * To recalculate the catch-up time, clear it                   * when SOC changes.                   */                  chip->catch_up_time_sec = 0;                    if (chip->calculated_soc == 100)                      /* update last_soc immediately */                      report_vm_bms_soc(chip);                    pr_debug("update bms_psyn");                  power_supply_changed(&chip->bms_psy);              } else if (chip->last_soc != chip->calculated_soc) {                  pr_debug("update bms_psyn");                  power_supply_changed(&chip->bms_psy);              } else {                  report_vm_bms_soc(chip);              }          }          /* low SOC configuration */          low_soc_check(chip);      }      /*       * schedule the work only if last_soc has not caught up with       * the calculated soc or if we are using voltage based soc       */      if ((chip->last_soc != chip->calculated_soc) ||                      chip->dt.cfg_use_voltage_soc)          schedule_delayed_work(&chip->monitor_soc_work,              msecs_to_jiffies(get_calculation_delay_ms(chip)));        //复充标志位      if (chip->reported_soc_in_use && chip->charger_removed_since_full                  && !chip->charger_reinserted) {          /* record the elapsed time after last reported_soc change */          chip->reported_soc_change_sec += chip->delta_time_s;          pr_debug("reported_soc_change_sec=%dn",                      chip->reported_soc_change_sec);            /* above the catch up time, calculate new reported_soc */          if (chip->reported_soc_change_sec > UI_SOC_CATCHUP_TIME) {              calculate_reported_soc(chip);              chip->reported_soc_change_sec = 0;          }      }        mutex_unlock(&chip->last_soc_mutex);        bms_relax(&chip->vbms_soc_wake_source);  }

上面注释已经写的差不多了;看一下上报函数report_vm_bms_soc

static int report_vm_bms_soc(struct qpnp_bms_chip *chip)  {      int soc, soc_change, batt_temp, rc;      int time_since_last_change_sec = 0, charge_time_sec = 0;      unsigned long last_change_sec;      bool charging;        soc = chip->calculated_soc;        last_change_sec = chip->last_soc_change_sec;      //计算上次电量改变的情况      calculate_delta_time(&last_change_sec, &time_since_last_change_sec);        //判断电量是否正在充电      charging = is_battery_charging(chip);        pr_debug("charging=%d last_soc=%d last_soc_unbound=%dn",          charging, chip->last_soc, chip->last_soc_unbound);      /*       * account for charge time - limit it to SOC_CATCHUP_SEC to       * avoid overflows when charging continues for extended periods       */       //正在充电,last_soc是指上一次的最开始开机的soc,与计算出来的soc不一样,这是第一次,last_soc之后就会改变了,这里是初始化时间      if (charging && chip->last_soc != -EINVAL) {          if (chip->charge_start_tm_sec == 0 ||              (chip->catch_up_time_sec == 0 &&                  (abs(soc - chip->last_soc) >= MIN_SOC_UUC))) {              /*               * calculating soc for the first time               * after start of chg. Initialize catchup time               */              if (abs(soc - chip->last_soc) < MAX_CATCHUP_SOC)                  chip->catch_up_time_sec =                  (soc - chip->last_soc)                      * SOC_CATCHUP_SEC_PER_PERCENT;              else                  chip->catch_up_time_sec = SOC_CATCHUP_SEC_MAX;                chip->chg_start_soc = chip->last_soc;                if (chip->catch_up_time_sec < 0)                  chip->catch_up_time_sec = 0;              chip->charge_start_tm_sec = last_change_sec;                pr_debug("chg_start_soc=%d charge_start_tm_sec=%d catch_up_time_sec=%dn",                  chip->chg_start_soc, chip->charge_start_tm_sec,                          chip->catch_up_time_sec);          }            charge_time_sec = min(SOC_CATCHUP_SEC_MAX, (int)last_change_sec                  - chip->charge_start_tm_sec);            /* end catchup if calculated soc and last soc are same */          if (chip->last_soc == soc) {              chip->catch_up_time_sec = 0;              chip->chg_start_soc = chip->last_soc;          }      }        //不充电状态      if (chip->last_soc != -EINVAL) {          /*           * last_soc < soc  ... if we have not been charging at all           * since the last time this was called, report previous SoC.           * Otherwise, scale and catch up.           */          rc = get_batt_therm(chip, &batt_temp);          if (rc)              batt_temp = BMS_DEFAULT_TEMP;            if (chip->last_soc < soc && !charging)              soc = chip->last_soc;          else if (chip->last_soc < soc && soc != 100)              soc = scale_soc_while_chg(chip, charge_time_sec,                      chip->catch_up_time_sec,                      soc, chip->chg_start_soc);            /*           * if the battery is close to cutoff or if the batt_temp           * is under the low-temp threshold allow bigger change           */          if (bms_wake_active(&chip->vbms_lv_wake_source) ||              (batt_temp <= chip->dt.cfg_low_temp_threshold))              soc_change = min((int)abs(chip->last_soc - soc),                  time_since_last_change_sec);          else              soc_change = min((int)abs(chip->last_soc - soc),                  time_since_last_change_sec                      / SOC_CHANGE_PER_SEC);            if (chip->last_soc_unbound) {              chip->last_soc_unbound = false;          } else {              /*               * if soc have not been unbound by resume,               * only change reported SoC by 1.               */              soc_change = min(1, soc_change);          }            if (soc < chip->last_soc && soc != 0)              soc = chip->last_soc - soc_change;          if (soc > chip->last_soc && soc != 100)              soc = chip->last_soc + soc_change;      }        if (chip->last_soc != soc && !chip->last_soc_unbound)          chip->last_soc_change_sec = last_change_sec;        /*       * Check/update eoc under following condition:       * if there is change in soc:       *  soc != chip->last_soc       * during bootup if soc is 100:       */      soc = bound_soc(soc);      //当电池改变,或者在开机过程中达到100%的电量      if ((soc != chip->last_soc) || (soc == 100)) {          chip->last_soc = soc;          //在这个函数里面,如果report_soc==100的话,还是算是不充电的状态          //当上一次充电还是100,报告已经充满电了,假设有这个标志的话,qcom,use-reported-soc,会设置eoc_reported为true,这个在之后复充标志的时候有用到          check_eoc_condition(chip);          //不充电状态并且设置的复充电量高于0%,这是必备条件          if ((chip->dt.cfg_soc_resume_limit > 0) && !charging)              //里面的复充条件是              check_recharge_condition(chip);      }        pr_debug("last_soc=%d calculated_soc=%d soc=%d time_since_last_change=%dn",              chip->last_soc, chip->calculated_soc,              soc, time_since_last_change_sec);        /*       * Backup the actual ocv (last_ocv_uv) and not the       * last_soc-interpolated ocv. This makes sure that       * the BMS algorithm always uses the correct ocv and       * can catch up on the last_soc (across reboots).       * We do not want the algorithm to be based of a wrong       * initial OCV.       */        backup_ocv_soc(chip, chip->last_ocv_uv, chip->last_soc);        //设备树中的qcom,use-reported-soc      if (chip->reported_soc_in_use)          //设置reported_soc为100          return prepare_reported_soc(chip);        pr_debug("Reported SOC=%dn", chip->last_soc);        return chip->last_soc;  }

2.4 复充、充电、停止充电逻辑

通过阅读设备树知道resume-soc这个节点来控制:

在probe函数中通过宏定SPMI_PROP_READ_OPTIONAL义:

SPMI_PROP_READ_OPTIONAL(cfg_soc_resume_limit, "resume-soc", rc);

cfg_soc_resume_limit分别在以下这几个函数中使用过:

  • check_recharge_condition函数,最后也是在report_vm_bms_soc函数中使用的
  • report_vm_bms_soc函数:为内核线程中上报的函数,主要电池控制也在这个函数里面
  • reported_soc_check_status函数
reported_soc_check_status ->  qpnp_vm_bms_ext_power_changed   //这个是个对调函数,暂时没看到哪里的有调到;

2.4.1 复充模式

  1. check_recharge_condition函数:
static void check_recharge_condition(struct qpnp_bms_chip *chip)  {      int rc;      union power_supply_propval ret = {0,};      int status = get_battery_status(chip);        if (chip->last_soc > chip->dt.cfg_soc_resume_limit)          return;        if (status == POWER_SUPPLY_STATUS_UNKNOWN) {          pr_debug("Unable to read battery statusn");          return;      }        /* Report recharge to charger for SOC based resume of charging */      if ((status != POWER_SUPPLY_STATUS_CHARGING) && chip->eoc_reported) {          ret.intval = POWER_SUPPLY_STATUS_CHARGING;          rc = chip->batt_psy->set_property(chip->batt_psy,                  POWER_SUPPLY_PROP_STATUS, &ret);          if (rc < 0) {              pr_err("Unable to set battery property rc=%dn", rc);          } else {              pr_info("soc dropped below resume_soc soc=%d resume_soc=%d, restart chargingn",                      chip->last_soc,                      chip->dt.cfg_soc_resume_limit);              chip->eoc_reported = false;          }      }  }

如果chip->last_soc高于设置的resume-soc复冲电压的话, 那么就return出来;

如果chip->last_soc低于设置的resume-soc复冲电压的话,就设置电源的充电状态,并设置set_property给上层;

我们可以看看这个函数在哪里使用的:

在函数的report_vm_bms_soc上使用的:

if ((soc != chip->last_soc) || (soc == 100)) {      chip->last_soc = soc;      check_eoc_condition(chip);      if ((chip->dt.cfg_soc_resume_limit > 0) && !charging)          check_recharge_condition(chip);  }

当电压改变的时候,判断不在充电模式且设置的复充电容在95%;

2.4.2 停止充电模式

停止充电模式在函数的calculate_reported_soc函数中:

monitor_soc_work -->      calculate_reported_soc
static void calculate_reported_soc(struct qpnp_bms_chip *chip)  {      union power_supply_propval ret = {0,};        if (chip->last_soc < 0) {          pr_debug("last_soc is not ready, returnn");          return;      }        //这样就是处于充电模式      if (chip->reported_soc > chip->last_soc) {          /*send DISCHARGING status if the reported_soc drops from 100 */          //当充电到100%的时候,设置停止充电的状态          if (chip->reported_soc == 100) {              ret.intval = POWER_SUPPLY_STATUS_DISCHARGING;              chip->batt_psy->set_property(chip->batt_psy,                  POWER_SUPPLY_PROP_STATUS, &ret);              pr_debug("Report discharging status, reported_soc=%d, last_soc=%dn",                      chip->reported_soc, chip->last_soc);          }          /*          * reported_soc_delta is used to prevent          * the big change in last_soc,          * this is not used in high current mode          */          if (chip->reported_soc_delta > 0)              chip->reported_soc_delta--;            if (chip->reported_soc_high_current)              chip->reported_soc--;          else              chip->reported_soc = chip->last_soc                      + chip->reported_soc_delta;            pr_debug("New reported_soc=%d, last_soc is=%dn",                      chip->reported_soc, chip->last_soc);      } else {          chip->reported_soc_in_use = false;          chip->reported_soc_high_current = false;          pr_debug("reported_soc equals last_soc,stop reported_soc processn");      }      pr_debug("bms power_supply_changedn");      power_supply_changed(&chip->bms_psy);  }

现在我们想一想如何保持将100%的电压一直保持到95%到复充的状态呢?有一个非常重要的标志位charger_removed_since_full

这个标志位是什么意思呢?字面意思就是当充电器被拔掉的时候是电量满电的;也就是说电量满电的之后(是之后),并且充电器没有拔掉的时候;看一下这个标志位是会在什么时候改变的吧:

static void reported_soc_check_status(struct qpnp_bms_chip *chip)  {      u8 present;        present = is_charger_present(chip);      pr_debug("usb_present=%dn", present);      //当没有充电状态,并且false的状态      if (!present && !chip->charger_removed_since_full) {          chip->charger_removed_since_full = true;          pr_debug("reported_soc: charger removed since fulln");          return;      }      if (chip->reported_soc_high_current) {          pr_debug("reported_soc in high current mode, returnn");          return;      }      if ((chip->reported_soc - chip->last_soc) >              (100 - chip->dt.cfg_soc_resume_limit                          + HIGH_CURRENT_TH)) {          chip->reported_soc_high_current = true;          chip->charger_removed_since_full = true;          chip->charger_reinserted = false;          pr_debug("reported_soc enters high current moden");          return;      }      if (present && chip->charger_removed_since_full) {          chip->charger_reinserted = true;          pr_debug("reported_soc: charger reinsertedn");      }      if (!present && chip->charger_removed_since_full) {          chip->charger_reinserted = false;          pr_debug("reported_soc: charger removed againn");      }  }

但这个函数也要在一定条件下才能进来,同样也需要reported_soc_in_use标志位来使用:

if (chip->reported_soc_in_use)          reported_soc_check_status(chip);

最开始的时候reported_soc_in_use已经是true的状态了,只有两种情况会改变它,

  1. 在重新插入的情况下,充完了电;
  2. calculate_reported_soc函数中,属于放电的状态;

3. 流程图