k-means聚类分析 python 代码实现(不使用现成聚类库)

一、实验目标

    1、使用 K-means 模型进行聚类,尝试使用不同的类别个数 K,并分析聚类结果。

​    2、按照 8:2 的比例随机将数据划分为训练集和测试集,至少尝试 3 个不同的 K 值,并画出不同 K 下 的聚类结果,及不同模型在训练集和测试集上的损失。对结果进行讨论,发现能解释数据的最好的 K 值。

二、算法原理

    首先确定k,随机选择k个初始点之后所有点根据距离质点的距离进行聚类分析,离某一个质点a相较于其他质点最近的点分配到a的类中,根据每一类mean值更新迭代聚类中心,在迭代完成后分别计算训 练集和测试集的损失函数SSE_train、SSE_test,画图进行分析。

                                                                                                                                

 

伪代码如下:

num=10  #k的种类
for k in range(1,num):
    随机选择k个质点
    for i in range(n):   #迭代n次
        根据点与质点间的距离对于X_train进行聚类
        根据mean值迭代更新质点
     计算SSE_train
     计算SSE_test
画图

 算法流程图:

                                          

 

三、代码实现

1、导入库

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
from sklearn.model_selection import train_test_split 

2、计算距离

def distance(p1,p2):
    return np.sqrt((p1[0]-p2[0])**2+(p1[1]-p2[1])**2)
    

3、计算均值

def means(arr):
    return np.array([np.mean([p[0] for p in arr]),np.mean([p[1] for p in arr])])

4、二维数据处理

#数据处理
data= pd.read_table('cluster.dat',sep='\t',header=None) 
data.columns=['x']
data['y']=None
for i in range(len(data)):        #遍历每一行    
    column = data['x'][i].split( ) #分开第i行,x列的数据。split()默认是以空格等符号来分割,返回一个列表    
    data['x'][i]=column[0]        #分割形成的列表第一个数据给x列    
    data['y'][i]=column[1]       #分割形成的列表第二个数据给y列
list=[]
list1=[]
for i in range(len(data)):
    list.append(float(data['x'][i]))
    list.append(float(data['y'][i]))
    list1.append(list)
    list=[]
arr=np.array(list1)
print(arr)

 

 

5、划分数据集和训练集

#按照8:2划分数据集和训练集
X_train, X_test = train_test_split(arr,test_size=0.2,random_state=1)

6、主要聚类实现

count=10  #k的种类:1、2、3...10
SSE_train=[]  #训练集的SSE
SSE_test=[]    #测试集的SSE
n=20      #迭代次数
for k in range(1,count):
    cla_arr=[]    #聚类容器
    centroid=[]   #质点
    for i in range(k):
        j=np.random.randint(0,len(X_train))
        centroid.append(list1[j])
        cla_arr.append([])
    centroids=np.array(centroid)    
    cla_tmp=cla_arr  #临时训练集聚类容器
    cla_tmp1=cla_arr #临时测试集聚类容器
    for i in range(n):  #开始迭代
        for e in X_train:  #对于训练集中的点进行聚类分析
            pi=0
            min_d=distance(e,centroids[pi])   
            for j in range(k):
                if(distance(e,centroids[j])<min_d):  
                    min_d=distance(e,centroids[j])
                    pi=j
            cla_tmp[pi].append(e)       #添加点到相应的聚类容器中
        
        for m in range(k):
            if(n-1==i):
                break
            centroids[m]=means(cla_tmp[m])#迭代更新聚类中心
            cla_tmp[m]=[]
    dis=0
    for i in range(k):                    #计算训练集的SSE_train
        for j in range(len(cla_tmp[i])):
            dis+=distance(centroids[i],cla_tmp[i][j])
    SSE_train.append(dis)
    
    col = ['HotPink','Aqua','Chartreuse','yellow','red','blue','green','grey','orange'] #画出对应K的散点图
    for i in range(k):
        plt.scatter([e[0] for e in cla_tmp[i]],[e[1] for e in cla_tmp[i]],color=col[i])
        plt.scatter(centroids[i][0],centroids[i][1],linewidth=3,s=300,marker='+',color='black')
    plt.show()
    
    for e in X_test:                     #测试集根据训练集的质点进行聚类分析
        ki=0
        min_d=distance(e,centroids[ki])
        for j in range(k):
            if(distance(e,centroids[j])<min_d):
                min_d=distance(e,centroids[j])
                ki=j
        cla_tmp1[ki].append(e)
    for i in range(k):                  #计算测试集的SSE_test
        for j in range(len(cla_tmp1[i])):
            dis+=distance(centroids[i],cla_tmp1[i][j])
    SSE_test.append(dis)
    

 

 7、画图

SSE=[] #计算测试集与训练集SSE的差值
for i in range(len(SSE_test)):
    SSE.append(SSE_test[i]-SSE_train[i])

x=[1,2,3,4,5,6,7,8,9]
plt.figure()
plt.plot(x,SSE_train,marker='*')
plt.xlabel("K")
plt.ylabel("SSE_train")
plt.show()                #画出SSE_train的图

plt.figure()
plt.plot(x,SSE_test,marker='*')
plt.xlabel("K")
plt.ylabel("SSE_test")
plt.show()               #画出SSE_test的图

plt.figure()
plt.plot(x,SSE,marker='+')
plt.xlabel("K")
plt.ylabel("SSE_test-SSE_train")
plt.show()               #画出SSE_test-SSE_train的图

 

 

 

 四、实验结果分析

  可以看出SSE随着K的增长而减小,测试集和训练集的图形趋势几乎一致,在相同的K值下,测试集的SSE大于训练集的SSE。于是我对于在相同的K值下的SSE_test和SSE_train做了减法(上图3),可知K=4时数据得出结果最好。这里我主要使用肘部原则来判断。本篇并未实现轮廓系数,由于博主是python小白,故此次代码参考了一部分CSDN的博客://blog.csdn.net/qq_37509235/article/details/82925781