寫一手漂亮的代碼,走向極致的編程 一、代碼運行時間分析
前言
寫一手漂亮的代碼,何謂漂亮的代碼?對我來說大概有這麼幾點:
- 寫法符合規範(如:該空格的地方打上空格,該換行的地方換行,名命方式符合規範等等)
- 簡潔且可讀性高(能十行代碼實現並且讓人容易看懂的絕不寫十一行,對經常重複出現的代碼段落進行封裝)
- 性能高(如:運行時間儘可能短,運行時所用內存儘可能少)
要實現以上目標,自然就要對代碼進行優化,說到代碼的優化,自然而然就會想到對算法時間複雜度進行優化,比如我要實現一個在有序數組中查找一個數,最容易想到的就是遍歷一遍 O(n) 的複雜度,優化一下自然是使用二分, O(logn) 的複雜度。如果這段代碼在我們的程序中會經常被調用,那麼,通過這算法上的優化,我們的程序性能自然而然的會有很高的提升。
但是,有時候會發現,已經對算法進行優化了,程序的性能(如運行時間、內存佔用等)仍然不能達到預期,那麼,這時候該如何對我們的代碼進行進一步的優化呢?
這篇文章將以 Python 為例進行介紹
先來段代碼
這裡,我將通過使用 Julia 分形的代碼來進行。
Julia 集合,由式 \(f_c(z) = z ^2 + c\) 進行反覆迭代到。
對於固定的複數 c ,取某一 z 值,可以得到序列
\(z_0, f_c(z_0), f_c(f_c(z_0)), …\)
這一序列可能發散於無窮大或處於某一範圍之內並收斂於某一值,我們將使其不擴散的 z 值的集合稱為朱利亞集合。
import time
import numpy as np
import imageio
import PIL
import matplotlib.pyplot as plt
import cv2 as cv
x1, x2, y1, y2 = -1.8, 1.8, -1.8, 1.8
c_real, c_imag = -0.62772, -0.42193
def calculate_z_serial_purepython(maxiter, zs, cs):
output = [0] * len(zs)
for i in range(len(zs)):
n = 0
z = zs[i]
c = cs[i]
while abs(z) < 2 and n < maxiter:
z = z * z + c
n += 1
output[i] = n
return output
def calc_pure_python(desired_width, max_itertions):
x_step = (float(x2 - x1)) / float(desired_width)
y_step = (float(y2 - y1)) / float(desired_width)
x, y = [], []
ycoord = y1
while ycoord < y2:
y.append(ycoord)
ycoord += y_step
xcoord = x1
while xcoord < x2:
x.append(xcoord)
xcoord += x_step
zs, cs = [], []
for ycoord in y:
for xcoord in x:
zs.append(complex(xcoord, ycoord))
cs.append(complex(c_real, c_imag))
print(f"Length of x: {len(x)}")
print(f"Total elements: {len(zs)}")
start_time = time.time()
output = calculate_z_serial_purepython(max_itertions, zs, cs)
end_time = time.time()
secs = end_time - start_time
print("calculate_z_serial_purepython took", secs, "seconds")
assert sum(output) == 33219980
# # show img
# output = np.array(output).reshape(desired_width, desired_width)
# plt.imshow(output, cmap='gray')
# plt.savefig("julia.png")
if __name__ == "__main__":
calc_pure_python(desired_width=1000, max_itertions=300)
這段代碼運行完,可以得到圖片
運行結果
Length of x: 1000
Total elements: 1000000
calculate_z_serial_purepython took 25.053941249847412 seconds
開始分析
這裡,將通過各種方法來對這段代碼的運行時間來進行分析
直接打印運行時間
在前面的代碼中,我們可以看到有 start_time 和 end_time 兩個變量,通過 print 兩個變量的差值即可得到運行時間,但是,每次想要打印運行時間都得加那麼幾行代碼就會很麻煩,此時我們可以通過使用修飾器來進行
from functools import wraps
def timefn(fn):
@wraps(fn)
def measure_time(*args, **kwargs):
start_time = time.time()
result = fn(*args, **kwargs)
end_time = time.time()
print("@timefn:" + fn.__name__ + " took " + str(end_time - start_time), " seconds")
return result
return measure_time
然後對 calculate_z_serial_purepython 函數進行測試
@timefn
def calculate_z_serial_purepython(maxiter, zs, cs):
...
運行後輸出結果
Length of x: 1000
Total elements: 1000000
@timefn:calculate_z_serial_purepython took 26.64286208152771 seconds
calculate_z_serial_purepython took 26.64286208152771 seconds
另外,也可以在命令行中輸入
python -m timeit -n 5 -r 5 -s "import code" "code.calc_pure_python(desired_width=1000, max_itertions=300)"
其中 -n 5
表示循環次數, -r 5
表示重複次數,timeit 會對語句循環執行 n 次,並計算平均值作為一個結果,重複 r 次選出最好的結果。
5 loops, best of 5: 24.9 sec per loop
UNIX tine 命令
由於電腦上沒有 Linux 環境,於是使用 WSL 來進行
time -p python code.py
如果是 Linux 中進行,可能命令需改成
/usr/bin/time -p python code.py
輸出結果
Length of x: 1000
Total elements: 1000000
@timefn:calculate_z_serial_purepython took 14.34933090209961 seconds
calculate_z_serial_purepython took 14.350624322891235 seconds
real 15.57
user 15.06
sys 0.40
其中 real 記錄整體耗時, user 記錄了 CPU 花在任務上的時間,sys 記錄了內核函數耗費的時間
/usr/bin/time --verbose python code.py
輸出,WSL 的 time 命令裏面沒有 –verbose 這個參數,只能到服務器裏面試了,突然覺得我的筆記本跑的好慢。。。
Length of x: 1000
Total elements: 1000000
@timefn:calculate_z_serial_purepython took 7.899603605270386 seconds
calculate_z_serial_purepython took 7.899857997894287 seconds
Command being timed: "python code.py"
User time (seconds): 8.33
System time (seconds): 0.08
Percent of CPU this job got: 98%
Elapsed (wall clock) time (h:mm:ss or m:ss): 0:08.54
Average shared text size (kbytes): 0
Average unshared data size (kbytes): 0
Average stack size (kbytes): 0
Average total size (kbytes): 0
Maximum resident set size (kbytes): 98996
Average resident set size (kbytes): 0
Major (requiring I/O) page faults: 0
Minor (reclaiming a frame) page faults: 25474
Voluntary context switches: 0
Involuntary context switches: 2534
Swaps: 0
File system inputs: 0
File system outputs: 0
Socket messages sent: 0
Socket messages received: 0
Signals delivered: 0
Page size (bytes): 4096
Exit status: 0
這裏面需要關心的參數是 Major (requiring I/O) page faults
,表示操作系統是否由於 RAM 中的數據不存在而需要從磁盤上讀取頁面。
cProfile 模塊
cProfile 模塊是標準庫內建三個的分析工具之一,另外兩個是 hotshot 和 profile。
python -m cProfile -s cumulative code.py
-s cumulative 表示對每個函數累計花費的時間進行排序
輸出
36222017 function calls in 30.381 seconds
Ordered by: cumulative time
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 30.381 30.381 {built-in method builtins.exec}
1 0.064 0.064 30.381 30.381 code.py:1(<module>)
1 1.365 1.365 30.317 30.317 code.py:35(calc_pure_python)
1 0.000 0.000 28.599 28.599 code.py:13(measure_time)
1 19.942 19.942 28.598 28.598 code.py:22(calculate_z_serial_purepython)
34219980 8.655 0.000 8.655 0.000 {built-in method builtins.abs}
2002000 0.339 0.000 0.339 0.000 {method 'append' of 'list' objects}
1 0.012 0.012 0.012 0.012 {built-in method builtins.sum}
4 0.003 0.001 0.003 0.001 {built-in method builtins.print}
1 0.000 0.000 0.000 0.000 code.py:12(timefn)
1 0.000 0.000 0.000 0.000 functools.py:44(update_wrapper)
4 0.000 0.000 0.000 0.000 {built-in method time.time}
1 0.000 0.000 0.000 0.000 <frozen importlib._bootstrap>:989(_handle_fromlist)
4 0.000 0.000 0.000 0.000 {built-in method builtins.len}
7 0.000 0.000 0.000 0.000 {built-in method builtins.getattr}
1 0.000 0.000 0.000 0.000 {built-in method builtins.hasattr}
5 0.000 0.000 0.000 0.000 {built-in method builtins.setattr}
1 0.000 0.000 0.000 0.000 functools.py:74(wraps)
1 0.000 0.000 0.000 0.000 {method 'update' of 'dict' objects}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
可以看到,在代碼的入口處總共花費了 30.381 秒,ncalls 為 1,表示只執行了 1 次,然後 calculate_z_serial_purepython 花費了 28.598 秒,可以推斷出調用該函數使用了近 2 秒。另外可以看到,abs 函數被調用了 34219980 次。對列表項的 append 操作進行了 2002000 次(1000 * 1000 * 2 +1000 * 2 )。
接下來,我們進行更深入的分析。
python -m cProfile -o profile.stats code.py
先生成一個統計文件,然後在 python 中進行分析
>>> import pstats
>>> p = pstats.Stats("profile.stats")
>>> p.sort_stats("cumulative")
<pstats.Stats object at 0x000002AA0A6A8908>
>>> p.print_stats()
Sat Apr 25 16:38:07 2020 profile.stats
36222017 function calls in 30.461 seconds
Ordered by: cumulative time
ncalls tottime percall cumtime percall filename:lineno(function)
1 0.000 0.000 30.461 30.461 {built-in method builtins.exec}
1 0.060 0.060 30.461 30.461 code.py:1(<module>)
1 1.509 1.509 30.400 30.400 code.py:35(calc_pure_python)
1 0.000 0.000 28.516 28.516 code.py:13(measure_time)
1 20.032 20.032 28.515 28.515 code.py:22(calculate_z_serial_purepython)
34219980 8.483 0.000 8.483 0.000 {built-in method builtins.abs}
2002000 0.360 0.000 0.360 0.000 {method 'append' of 'list' objects}
1 0.012 0.012 0.012 0.012 {built-in method builtins.sum}
4 0.004 0.001 0.004 0.001 {built-in method builtins.print}
1 0.000 0.000 0.000 0.000 code.py:12(timefn)
1 0.000 0.000 0.000 0.000 C:\Users\ITryagain\AppData\Local\conda\conda\envs\tensorflow-gpu\lib\functools.py:44(update_wrapper)
4 0.000 0.000 0.000 0.000 {built-in method time.time}
1 0.000 0.000 0.000 0.000 <frozen importlib._bootstrap>:989(_handle_fromlist)
7 0.000 0.000 0.000 0.000 {built-in method builtins.getattr}
1 0.000 0.000 0.000 0.000 {built-in method builtins.hasattr}
4 0.000 0.000 0.000 0.000 {built-in method builtins.len}
1 0.000 0.000 0.000 0.000 C:\Users\ITryagain\AppData\Local\conda\conda\envs\tensorflow-gpu\lib\functools.py:74(wraps)
1 0.000 0.000 0.000 0.000 {method 'update' of 'dict' objects}
5 0.000 0.000 0.000 0.000 {built-in method builtins.setattr}
1 0.000 0.000 0.000 0.000 {method 'disable' of '_lsprof.Profiler' objects}
<pstats.Stats object at 0x000002AA0A6A8908>
這裡,就生成了與上面一致的信息
>>> p.print_callers()
Ordered by: cumulative time
Function was called by...
ncalls tottime cumtime
{built-in method builtins.exec} <-
code.py:1(<module>) <- 1 0.060 30.461 {built-in method builtins.exec}
code.py:35(calc_pure_python) <- 1 1.509 30.400 code.py:1(<module>)
code.py:13(measure_time) <- 1 0.000 28.516 code.py:35(calc_pure_python)
code.py:22(calculate_z_serial_purepython) <- 1 20.032 28.515 code.py:13(measure_time)
{built-in method builtins.abs} <- 34219980 8.483 8.483 code.py:22(calculate_z_serial_purepython)
{method 'append' of 'list' objects} <- 2002000 0.360 0.360 code.py:35(calc_pure_python)
{built-in method builtins.sum} <- 1 0.012 0.012 code.py:35(calc_pure_python)
{built-in method builtins.print} <- 1 0.000 0.000 code.py:13(measure_time)
3 0.003 0.003 code.py:35(calc_pure_python)
code.py:12(timefn) <- 1 0.000 0.000 code.py:1(<module>)
C:\Users\ITryagain\AppData\Local\conda\conda\envs\tensorflow-gpu\lib\functools.py:44(update_wrapper) <- 1 0.000 0.000 code.py:12(timefn)
{built-in method time.time} <- 2 0.000 0.000 code.py:13(measure_time)
2 0.000 0.000 code.py:35(calc_pure_python)
<frozen importlib._bootstrap>:989(_handle_fromlist) <- 1 0.000 0.000 code.py:1(<module>)
{built-in method builtins.getattr} <- 7 0.000 0.000 C:\Users\ITryagain\AppData\Local\conda\conda\envs\tensorflow-gpu\lib\functools.py:44(update_wrapper)
{built-in method builtins.hasattr} <- 1 0.000 0.000 <frozen importlib._bootstrap>:989(_handle_fromlist)
{built-in method builtins.len} <- 2 0.000 0.000 code.py:22(calculate_z_serial_purepython)
2 0.000 0.000 code.py:35(calc_pure_python)
C:\Users\ITryagain\AppData\Local\conda\conda\envs\tensorflow-gpu\lib\functools.py:74(wraps) <- 1 0.000 0.000 code.py:12(timefn)
{method 'update' of 'dict' objects} <- 1 0.000 0.000 C:\Users\ITryagain\AppData\Local\conda\conda\envs\tensorflow-gpu\lib\functools.py:44(update_wrapper)
{built-in method builtins.setattr} <- 5 0.000 0.000 C:\Users\ITryagain\AppData\Local\conda\conda\envs\tensorflow-gpu\lib\functools.py:44(update_wrapper)
{method 'disable' of '_lsprof.Profiler' objects} <-
<pstats.Stats object at 0x000002AA0A6A8908>
這裡,我們可以看到,在每一行最後會有調用這部分的父函數名稱,這樣我們就可以定位到對某一操作最費時的那個函數。
我們還可以顯示那個函數調用了其它函數
>>> p.print_callees()
Ordered by: cumulative time
Function called...
ncalls tottime cumtime
{built-in method builtins.exec} -> 1 0.060 30.461 code.py:1(<module>)
code.py:1(<module>) -> 1 0.000 0.000 <frozen importlib._bootstrap>:989(_handle_fromlist)
1 0.000 0.000 code.py:12(timefn)
1 1.509 30.400 code.py:35(calc_pure_python)
code.py:35(calc_pure_python) -> 1 0.000 28.516 code.py:13(measure_time)
2 0.000 0.000 {built-in method builtins.len}
3 0.003 0.003 {built-in method builtins.print}
1 0.012 0.012 {built-in method builtins.sum}
2 0.000 0.000 {built-in method time.time}
2002000 0.360 0.360 {method 'append' of 'list' objects}
code.py:13(measure_time) -> 1 20.032 28.515 code.py:22(calculate_z_serial_purepython)
1 0.000 0.000 {built-in method builtins.print}
2 0.000 0.000 {built-in method time.time}
code.py:22(calculate_z_serial_purepython) -> 34219980 8.483 8.483 {built-in method builtins.abs}
2 0.000 0.000 {built-in method builtins.len}
{built-in method builtins.abs} ->
{method 'append' of 'list' objects} ->
{built-in method builtins.sum} ->
{built-in method builtins.print} ->
code.py:12(timefn) -> 1 0.000 0.000 C:\Users\ITryagain\AppData\Local\conda\conda\envs\tensorflow-gpu\lib\functools.py:44(update_wrapper)
1 0.000 0.000 C:\Users\ITryagain\AppData\Local\conda\conda\envs\tensorflow-gpu\lib\functools.py:74(wraps)
C:\Users\ITryagain\AppData\Local\conda\conda\envs\tensorflow-gpu\lib\functools.py:44(update_wrapper) -> 7 0.000 0.000 {built-in method builtins.getattr}
5 0.000 0.000 {built-in method builtins.setattr}
1 0.000 0.000 {method 'update' of 'dict' objects}
{built-in method time.time} ->
<frozen importlib._bootstrap>:989(_handle_fromlist) -> 1 0.000 0.000 {built-in method builtins.hasattr}
{built-in method builtins.getattr} ->
{built-in method builtins.hasattr} ->
{built-in method builtins.len} ->
C:\Users\ITryagain\AppData\Local\conda\conda\envs\tensorflow-gpu\lib\functools.py:74(wraps) ->
{method 'update' of 'dict' objects} ->
{built-in method builtins.setattr} ->
{method 'disable' of '_lsprof.Profiler' objects} ->
<pstats.Stats object at 0x000002AA0A6A8908>
line_profiler 逐行分析
前面我們通過 cProfile 來對代碼進行了整體的分析,當我們確定了耗時多的函數後,想對該函數進行進一步分析時,就可以使用 line_profiler 了。
先安裝
pip install line_profiler
或
conda install line_profiler
在需要測試的函數前面加上修飾器 @profile,然後命令函輸入
kernprof -l -v code.py
輸出
Wrote profile results to code.py.lprof
Timer unit: 1e-07 s
Total time: 137.019 s
File: code.py
Function: calculate_z_serial_purepython at line 23
Line # Hits Time Per Hit % Time Line Contents
==============================================================
23 @profile
24 def calculate_z_serial_purepython(maxiter, zs, cs):
25 1 89776.0 89776.0 0.0 output = [0] * len(zs)
26 1000001 9990393.0 10.0 0.7 for i in range(len(zs)):
27 1000000 9244029.0 9.2 0.7 n = 0
28 1000000 10851654.0 10.9 0.8 z = zs[i]
29 1000000 10242762.0 10.2 0.7 c = cs[i]
30 34219980 558122806.0 16.3 40.7 while abs(z) < 2 and n < maxiter:
31 33219980 403539388.0 12.1 29.5 z = z * z + c
32 33219980 356918574.0 10.7 26.0 n += 1
33 1000000 11186107.0 11.2 0.8 output[i] = n
34 1 12.0 12.0 0.0 return output
運行時間比較長。。不過,這裡可以發現,耗時的操作主要都在 while 循環中,做判斷的耗時最長,但是這裡我們並不知道是 abs(z) < 2 還是 n < maxiter 更花時間。z 與 n 的更新也比較花時間,這是因為在每次循環時, Python 的動態查詢機制都在工作。
那麼,這裡可以通過 timeit 來進行測試
In [1]: z = 0 + 0j
In [2]: %timeit abs(z) < 2
357 ns ± 21.1 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)
In [3]: n = 1
In [4]: maxiter = 300
In [5]: %timeit n < maxiter
119 ns ± 6.91 ns per loop (mean ± std. dev. of 7 runs, 10000000 loops each)
可以看到,n < maxiter 所需時間更短,並且每301次會有一次 False,而 abs(z) < 2 為 False 的次數我們並不好估計,佔比約為前面圖片中白色部分所佔比例。因此,我們可以假設交換兩條語句的順序可以使得程序運行速度更快。
Total time: 132.816 s
File: code.py
Function: calculate_z_serial_purepython at line 23
Line # Hits Time Per Hit % Time Line Contents
==============================================================
23 @profile
24 def calculate_z_serial_purepython(maxiter, zs, cs):
25 1 83002.0 83002.0 0.0 output = [0] * len(zs)
26 1000001 9833163.0 9.8 0.7 for i in range(len(zs)):
27 1000000 9241272.0 9.2 0.7 n = 0
28 1000000 10667576.0 10.7 0.8 z = zs[i]
29 1000000 10091308.0 10.1 0.8 c = cs[i]
30 34219980 531157092.0 15.5 40.0 while n < maxiter and abs(z) < 2:
31 33219980 393275303.0 11.8 29.6 z = z * z + c
32 33219980 352964180.0 10.6 26.6 n += 1
33 1000000 10851379.0 10.9 0.8 output[i] = n
34 1 11.0 11.0 0.0 return output
可以看到,確實是有所優化。
小節
從開始學習編程到現在差不多快 3 年了,之前可以說是從來沒有利用這些工具來對代碼性能進行過分析,最多也只是通過算法複雜度的分析來進行優化,接觸了這些之後就感覺,需要學習的東西還有很多。在近期進行的華為軟挑中,隊友也曾對代碼(C++)的運行時間進行過分析,如下圖。
下篇將介紹對運行時內存的分析。
參考
- 《Python 高性能編程》