29.python 線程互斥鎖Lock
- 2020 年 3 月 12 日
- 筆記
在前一篇文章 python線程創建和傳參 中我們介紹了關於python線程的一些簡單函數使用和線程的參數傳遞,使用多線程可以同時執行多個任務,提高開發效率,但是在實際開發中往往我們會碰到線程同步問題,假如有這樣一個場景:對全局變量累加1000000次,為了提高效率,我們可以使用多線程完成,示例代碼如下:
# !usr/bin/env python # -*- coding:utf-8 _*- """ @Author:何以解憂 @Blog(個人博客地址): shuopython.com @WeChat Official Account(微信公眾號):猿說python @Github:www.github.com @File:python_thread_lock.py @Time:2019/10/17 21:22 @Motto:不積跬步無以至千里,不積小流無以成江海,程序人生的精彩需要堅持不懈地積累! """ # 導入線程threading模塊 import threading # 聲明全局變量 g_num = 0 def my_thread1(): # 聲明全局變量 global g_num # 循環 1000000 次,每次累計加 1 for i in range(0,1000000): g_num = g_num + 1 def my_thread2(): # 聲明全局變量 global g_num # 循環 1000000 次,每次累計加 1 for i in range(0,1000000): g_num = g_num + 1 def main(i): # 聲明全局變量 global g_num # 初始化全局變量,初始值為 0 g_num = 0 # 創建兩個線程,對全局變量進行累計加 1 t1 = threading.Thread(target=my_thread1) t2 = threading.Thread(target=my_thread2) # 啟動線程 t1.start() t2.start() # 阻塞函數,等待線程結束 t1.join() t2.join() # 獲取全局變量的值 print("第%d次計算結果:%d "% (i,g_num)) if __name__ == "__main__": # 循環4次,調用main函數,計算全局變量的值 for i in range(1,5): main(i)
輸出結果:
第1次計算結果:1262996 第2次計算結果:1661455 第3次計算結果:1300211 第4次計算結果:1563699
what ? 這是什麼操作??看着代碼好像也沒問題,兩個線程,各自累加1000000次,不應該輸出是2000000次嗎?而且調用了4次main函數,每次輸出的結果還不同!!

一.線程共享全局變量
分析下上面的代碼:兩個線程共享全局變量並執行for循環1000000,每次自動加1,我們都知道兩個線程都是同時在運行,也就是說兩個線程同時在執行 g_num = g_num + 1 操作, 經過我們冷靜分析一波,貌似結果還是應該等於2000000,對不對?

首先,我們將上面全局變量自動加 1 的代碼分為兩步:
第一步:g_num + 1 第二步:將 g_num + 1 的結果賦值給 g_num
由此可見,執行一個完整的自動加1過程需要兩步,然而線程卻是在同時運行,誰也不能保證線程1的第一步和第二步執行完成之後才執行線程2的第一步和第二步,執行的過程充滿隨機性,這就是導致每次計算結果不同的原因所在!
舉個簡單的例子:
假如當前 g_num 值是100,當線程1執行第一步時,cpu通過計算獲得結果101,並準備把計算的結果101賦值給g_num,然後再傳值的過程中,線程2突然開始執行了並且執行了第一步,此時g_num的值仍未100,101還在傳遞的過程中,還沒成功賦值,線程2獲得計算結果101,並準備傳遞給g_num,經過一來一去這麼一折騰,分明做了兩次加 1 操作,g_num結果卻是101,誤差就由此產生,往往循環次數越多,產生的誤差就越大。

二.線程互斥鎖
為了避免上述問題,我們可以利用線程互斥鎖解決這個問題。那麼互斥鎖到底是個什麼原理呢?互斥鎖就好比排隊上廁所,一個坑位只能蹲一個人,只有佔用坑位的人完事了,另外一個人才能上!

1.創建互斥鎖
導入線程模塊,通過 threading.Lock() 創建互斥鎖.
# 導入線程threading模塊 import threading # 創建互斥鎖 mutex = threading.Lock()
2.鎖定資源/解鎖資源
acquire() — 鎖定資源,此時資源是鎖定狀態,其他線程無法修改鎖定的資源,直到等待鎖定的資源釋放之後才能操作;
release() — 釋放資源,也稱為解鎖操作,對鎖定的資源解鎖,解鎖之後其他線程可以對資源正常操作;
以上面的代碼為列子:想得到正確的結果,可以直接利用互斥鎖在全局變量 加1 之前 鎖定資源,然後在計算完成之後釋放資源,這樣就是一個完整的計算過程,至於應該是哪個線程先執行,無所謂,先到先得,憑本事說話….演示代碼如下:
# !usr/bin/env python # -*- coding:utf-8 _*- """ @Author:何以解憂 @Blog(個人博客地址): shuopython.com @WeChat Official Account(微信公眾號):猿說python @Github:www.github.com @File:python_thread_lock.py @Time:2019/10/18 21:22 @Motto:不積跬步無以至千里,不積小流無以成江海,程序人生的精彩需要堅持不懈地積累! """ # 導入線程threading模塊 import threading # 聲明全局變量 g_num = 0 # 創建互斥鎖 mutex = threading.Lock() def my_thread1(): # 聲明全局變量 global g_num # 循環 1000000 次,每次累計加 1 for i in range(0,1000000): # 鎖定資源 mutex.acquire() g_num = g_num + 1 # 解鎖資源 mutex.release() def my_thread2(): # 聲明全局變量 global g_num # 循環 1000000 次,每次累計加 1 for i in range(0,1000000): # 鎖定資源 mutex.acquire() g_num = g_num + 1 # 解鎖資源 mutex.release() def main(i): # 聲明全局變量 global g_num # 初始化全局變量,初始值為 0 g_num = 0 # 創建兩個線程,對全局變量進行累計加 1 t1 = threading.Thread(target=my_thread1) t2 = threading.Thread(target=my_thread2) # 啟動線程 t1.start() t2.start() # 阻塞函數,等待線程結束 t1.join() t2.join() # 獲取全局變量的值 print("第%d次計算結果:%d "% (i,g_num)) if __name__ == "__main__": # 循環4次,調用main函數,計算全局變量的值 for i in range(1,5): main(i)
輸出結果:
第1次計算結果:2000000 第2次計算結果:2000000 第3次計算結果:2000000 第4次計算結果:2000000
由此可見,全局變量計算加上互斥鎖之後,不論執行多少次,計算結果都相同。注意:互斥鎖一旦鎖定之後要記得解鎖,否則資源會一直處於鎖定狀態;
三.線程死鎖
1.單個互斥鎖的死鎖:acquire()/release() 是成對出現的,互斥鎖對資源鎖定之後就一定要解鎖,否則資源會一直處於鎖定狀態,其他線程無法修改;就好比上面的代碼,任何一個線程沒有釋放資源release(),程序就會一直處於阻塞狀態(在等待資源被釋放),不信你可以試一試~
2.多個互斥鎖的死鎖:在同時操作多個互斥鎖的時候一定要格外小心,因為一不小心就容易進入死循環,假如有這樣一個場景:boss讓程序員一實現功能一的開發,讓程序員二實現功能二的開發,功能開發完成之後一起整合代碼!
# 導入線程threading模塊 import threading # 導入線程time模塊 import time # 創建互斥鎖 mutex_one = threading.Lock() mutex_two = threading.Lock() def programmer_thread1(): mutex_one.acquire() print("我是程序員1,module1開發正式開始,誰也別動我的代碼") time.sleep(2) # 此時會堵塞,因為這個mutex_two已經被線程programmer_thread2搶先上鎖了,等待解鎖 mutex_two.acquire() print("等待程序員2通知我合併代碼") mutex_two.release() mutex_one.release() def programmer_thread2(): mutex_two.acquire() print("我是程序員2,module2開發正式開始,誰也別動我的代碼") time.sleep(2) # 此時會堵塞,因為這個mutex_one已經被線程programmer_thread1搶先上鎖了,等待解鎖 mutex_one.acquire() print("等待程序員1通知我合併代碼") mutex_one.release() mutex_two.release() def main(): t1 = threading.Thread(target=programmer_thread1) t2 = threading.Thread(target=programmer_thread2) # 啟動線程 t1.start() t2.start() # 阻塞函數,等待線程結束 t1.join() t2.join() # 整合代碼結束 print("整合代碼結束 ") if __name__ == "__main__": main()
輸出結果:
我是程序員1,module1開發正式開始,誰也別動我的代碼 我是程序員2,module2開發正式開始,誰也別動我的代碼
分析下上面代碼:程序員1在等程序員2通知,程序員2在等程序員1通知,兩個線程都陷入阻塞中,因為兩個線程都在等待對方解鎖,這就是死鎖!所以在開發中對於死鎖的問題還是需要多多注意!
四.重點總結
1.線程與線程之間共享全局變量需要設置互斥鎖;
2.注意在互斥鎖操作中 acquire()/release() 成對出現,避免造成死鎖;