1 概念

  • 棧是一種先進後出(FILO,First-In-Last-Out)的線性表,棧和隊列非常相像,但是棧只能在棧頂插入(入棧)和刪除(出棧)元素。同樣,棧可以由鏈表和數組來實現。

  • 對於棧這種數據結構,可以用瀏覽器來解釋;比如我們可以把打開一個網站的過程看作是一次入棧操作,而返回上一次瀏覽的網站就相當於一次出棧操作。

  • 樹或棧這種數據結構用於解決 具有完全包含關係的問題

2 基本操作

2.1 結構定義

  • 實現棧需要引入1個變量top, 用來標記當前棧頂元素的位置。
// 棧的結構定義(順序表)
typedef struct Stack {
    int *data;
    int size, top; // size: 棧的容量,top: 標記棧頂元素的位置
} Stack;

// 棧的結構定義(鏈表)
typedef struct Node {
    int data;
    struct Node *next;
} Node;

typedef struct Stack {
    Node *top;
    int length;
} Stack;

2.2 入棧(top+1)

  1. 判斷當前棧是否已滿,能否繼續插入元素;
  2. 棧頂標記 top 後移一位;
  3. 將新元素插入到當前棧頂標記的位置;

2.3 出棧(top-1)

  1. 判斷當前棧是否為空,能否繼續刪除元素;
  2. 棧頂標記 top 前移一位;

3 代碼演示

3.1 數組棧

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

#define COLOR(a, b) "\033[" #b "m" a "\033[0m"
#define RED(a) COLOR(a, 31)
#define GREEN(a) COLOR(a, 32)

typedef struct Stack {
    int *data;
    int size, top; // size: 棧的容量,top: 虛擬棧頂指針
} Stack;

Stack *init(int);       // 初始化棧空間
int top(Stack *);       // 獲取棧頂元素
int empty(Stack *);     // 判斷棧空間是否為空
int push(Stack *, int); // 入棧/壓棧
int pop(Stack *);       // 出棧/彈棧
void clear(Stack *);    // 清空棧空間
void output(Stack *);   // 遍歷棧空間元素
int expand(Stack *);    // 擴容


int main() {
    srand(time(0));
    #define MAX_OP 20
    Stack *s = init(1);
    for (int i = 0; i < MAX_OP; i++) {
        int op = rand() % 4;
        int val = rand() % 100;
        switch (op) {
            case 0:
            case 1:
            case 2: {
                printf("push %d to the stack = %d\n", val, push(s, val));
            } break;
            case 3: {
                if (!empty(s)) {
                    printf("pop %d from the stack = ", top(s));
                    printf("%d\n", pop(s));
                }
            } break;
        }
        output(s), printf("\n");
    }
    #undef MAX_OP

    return 0;
}

Stack *init(int n) {
    Stack *s = (Stack *)malloc(sizeof(Stack));
    s->data = (int *)malloc(sizeof(int) * n);
    s->size = n;
    s->top = -1;    // 表示棧空間中沒有元素
    return s;
}

int top(Stack *s) {
    return s->data[s->top];
}

int empty(Stack *s) {
    return s->top == -1;
}

int push(Stack *s, int val) {
    if (s == NULL) return 0;
    if (s->top == s->size -1) {
        if (!expand(s)) {
            printf(RED("fail to expand!\n"));
            return 0;
        }
        printf(GREEN("success to expand! the new size = %d\n"), s->size);
    }
    s->data[++(s->top)] = val;
    return 1;
}

int pop(Stack *s) {
    if (s == NULL) return 0;
    if (empty(s)) return 0;
    s->top -= 1;
    return 1;
}

void clear(Stack *s) {
    if (s == NULL) return ;
    free(s->data);
    free(s);
    return ;
}

void output(Stack *s) {
    if (s == NULL) return ;
    printf("Stack(%d) : [", s->top + 1);
    for (int i = 0; i <= s->top; i++) {
        i && printf(", ");
        printf("%d", s->data[i]);
    }
    printf("]\n");
    return ;
}

int expand(Stack *s) {
    int extr_size = s->size;
    int *temp;
    while (extr_size) {
        temp = (int *)realloc(s->data, sizeof(int) * (s->size + extr_size));
        if (temp != NULL) break;
        extr_size >>= 1;
    }
    if (temp == NULL) return 0;
    s->data = temp;
    s->size += extr_size;
    return 1;
}

3.2 鏈棧

#include <stdio.h>
#include <stdlib.h>
#include <time.h>

typedef struct Node {
    int data;
    struct Node *next;
} Node;

typedef struct Stack {
    Node *top;
    int length;
} Stack;

Node *getNewNode(int);
Stack *init_stack();
void clear(Stack *);
int empty(Stack *);
int push(Stack *, int);
int pop(Stack *);
void output(Stack *);
int top(Stack *);

int main() {
    srand(time(0));
    #define MAX_OP 20
    Stack *s = init_stack();
    for (int i = 0; i < MAX_OP; i++) {
        int op = rand() % 4;
        int val = rand() % 100;
        switch (op) {
            case 0:
            case 1:
            case 2: {
                printf("push %d to the Stack = %d\n", val, push(s, val));
            } break;
            case 3: {
                if (!empty(s)) {
                    printf("pop %d from the Stack = ", top(s));
                    printf("%d\n", pop(s));
                }
            } break;
        }
        output(s), printf("\n");
    }
    #undef MAX_OP
    clear(s);
    return 0;
}

Node *getNewNode(int val) {
    Node *p = (Node *)malloc(sizeof(Node));
    p->data = val;
    p->next = NULL;
    return p;
}

Stack *init_stack() {
    Stack *s = (Stack *)malloc(sizeof(Stack));
    s->top = NULL;
    s->length = 0;
    return s;
}

void clear(Stack *s) {
    if (s == NULL) return;
    Node *p = s->top, *q;
    while (p != NULL) {
        q = p->next;
        free(p);
        p = q;
    }
    free(s);
    return;
}

int empty(Stack *s) {
    return s->top == NULL;
}

int top(Stack *s) {
    return s->top->data;
}

int push(Stack *s, int val) {
    if (s == NULL) return 0;
    Node *p = getNewNode(val);
    p->next = s->top;
    s->top = p;
    s->length += 1;
    return 1;
}

int pop(Stack *s) {
    if (s == NULL) return 0;
    if (empty(s)) return 0;
    Node *p = s->top;
    s->top = p->next;
    free(p);
    s->length -= 1;
    return 1;
}

void output(Stack *s) {
    if (s == NULL) return;
    printf("Stack[%d] : ", s->length);
    for (Node *p = s->top; p; p = p->next) {
        p != s->top && printf(" ");
        printf("%d", p->data);
    }
    printf("\n");
    return;
}

4 應用

4.1 數列翻轉

  1. 將數列中的元素依次入棧;
  2. 將棧頂元素依次出棧,直到棧為空為止;

4.2 表達式中的括號匹配

  1. 依次遍歷表達式中的字符,當該字符為左括號時,就入棧;當該字符為右括號時,就出棧;
  2. 在整個表達式遍歷結束時,且當前棧為空,則括號匹配成功,否則,括號匹配失敗;