Etcd中linearizable read實現

linearizable

有點疑惑,不確定是現在瀏覽的版本沒開發完全,還是沒有按照論文的linearizable來實現。

按照論文所說,在客戶端請求的時候,實際上是一個強一致的 exactly once的過程。

在etcd中,只看到了read的 linearizable ,並且用到的地方是在諸如讀取節點列表,開始事務等操作中。

可以從2個層面來驗證寫與讀一致性

business data which stored in etcd

因為raft只有leader是寫的入口,所以保證數據的順序是可以在leader做處理的。

業務數據的順序,etcd並不能保證順序,因為入口之外的原因太多:

並發,業務方的數據是並發過來的,那麼到達leader的先後性無法保證

業務請求策略,業務數據是並發且被路由到不通的follower,到達leader的先後性也是無法保證的

網絡延遲,那更無法保證絕對的先後性了

所以leader是無法保證業務數據的絕對先後,這是由client或者說使用方來設計的,和數據庫是一樣的道理。

leader能保證的是,進入其內部後數據保存的一致性

所以在業務數據層面,etcd無法保證其先後性,除非提供特殊的協議,事務算半種,要絕對的一致性,得是嵌入或者包裝業務數據的協議。

所以我理解的是,沒有在業務數據層面用寫一致的必要。

application config data of etcd

etcd中實現讀一致的入口全部都是和應用配置相關的,例如節點列表、事務、降級,下圖是使用到的地方

判斷讀一致的邏輯是

confirmedIndex, err := s.requestCurrentIndex(leaderChangedNotifier, requestId)
if isStopped(err) {
   return
}
if err != nil {
   nr.notify(err)
   continue
}

trace.Step("read index received")

trace.AddField(traceutil.Field{Key: "readStateIndex", Value: confirmedIndex})

appliedIndex := s.getAppliedIndex()
trace.AddField(traceutil.Field{Key: "appliedIndex", Value: strconv.FormatUint(appliedIndex, 10)})

if appliedIndex < confirmedIndex {
   select {
   case <-s.applyWait.Wait(confirmedIndex):
   case <-s.stopping:
      return
   }
}
// unblock all l-reads requested at indices before confirmedIndex
nr.notify(nil)

requestCurrentIndex會返回當前leader正在處理的commitIndex,這裡設計很巧妙,簡單來說是返回commitIndex,然後節點和自己的appiledIndex相比較,直到appliedIndex >= commitIndex ,才算做讀一致完成。

結合讀一致使用的地方以及邏輯這2點,保證的是所有請求時當下leader中在處理的數據在集群內都被處理了,可能後面又變了,例如節點變更了,所以實際上是瞬時一致並且最終一致。

例如txn開啟事務,保證了請求時leader的數據都處理好了,因為leader要處理的數據也包括節點變更的配置數據。

所保證的是臟讀的場景對於單次請求是有效的,即單次請求是不會有臟讀的,但這次請求返回的數據與下次請求返回的數據仍然有可能不一致,所以是最終一致的。

寫一致是否有必要在這裡實現?如果這次的請求要求寫一致,那麼下次請求就要依賴於這次請求的寫一致,這次請求還沒結束,後面的請求全部都要wating,並且無窮級聯下去。所以選擇了最終一致來應對寫一致。這是個典型的base。

結合以上2個層面的分析,寫一致在業務數據層面是由使用方來設計,配置數據層面是由最終一致代替。

讀一致業務數據層面也是由使用方來設計,配置數據層面保證當次請求的讀取沒有臟數據,也由最終一致代替。

Raft log replication flow

還是得放上這張圖,因為整個通訊過程仍然是遵照raft消息的方式,只不過這裡用的消息類型是 MsgReadIndex,同proposal的區別是沒有commit的過程,僅僅是將MsgReadIndex消息發送給leader,leader會回復ReadIndexResp。

Logic flow

Trigger linearizable read

讀一致的入口在上面已列舉,此處隨意找一個

func (s *EtcdServer) Txn(ctx context.Context, r *pb.TxnRequest) (*pb.TxnResponse, error) {
   if isTxnReadonly(r) {
      trace := traceutil.New("transaction",
         s.Logger(),
         traceutil.Field{Key: "read_only", Value: true},
      )
      ctx = context.WithValue(ctx, traceutil.TraceKey, trace)
      if !isTxnSerializable(r) {
         err := s.linearizableReadNotify(ctx)
         trace.Step("agreement among raft nodes before linearized reading")
         if err != nil {
            return nil, err
         }
      }

s.linearizableReadNotify(ctx),等待讀一致處理完成

開始讀一致的邏輯

func (s *EtcdServer) linearizableReadNotify(ctx context.Context) error {
   s.readMu.RLock()
   nc := s.readNotifier
   s.readMu.RUnlock()

   // signal linearizable loop for current notify if it hasn't been already
   select {
   case s.readwaitc <- struct{}{}:
   default:
   }

   // wait for read state notification
   select {
   case <-nc.c:
      return nc.err
   case <-ctx.Done():
      return ctx.Err()
   case <-s.done:
      return ErrStopped
   }
}

這是與 linearizableReadLoop 相互通訊的膠水函數

s.readwaitc 觸發linearizableReadLoop邏輯開始查詢readindex

s.readNotifier 返回信號表明讀一致處理完成

Read loop on server starting

在server 啟動時,會啟動讀一致的自旋,即上面處理讀一致的邏輯

func (s *EtcdServer) linearizableReadLoop() {
   for {
      requestId := s.reqIDGen.Next()
      leaderChangedNotifier := s.LeaderChangedNotify()
      select {
      case <-leaderChangedNotifier:
         continue
      case <-s.readwaitc:
      case <-s.stopping:
         return
      }

      // as a single loop is can unlock multiple reads, it is not very useful
      // to propagate the trace from Txn or Range.
      trace := traceutil.New("linearizableReadLoop", s.Logger())

      nextnr := newNotifier()
      s.readMu.Lock()
      nr := s.readNotifier
      s.readNotifier = nextnr
      s.readMu.Unlock()

      confirmedIndex, err := s.requestCurrentIndex(leaderChangedNotifier, requestId)
      if isStopped(err) {
         return
      }
      if err != nil {
         nr.notify(err)
         continue
      }

      trace.Step("read index received")

      trace.AddField(traceutil.Field{Key: "readStateIndex", Value: confirmedIndex})

      appliedIndex := s.getAppliedIndex()
      trace.AddField(traceutil.Field{Key: "appliedIndex", Value: strconv.FormatUint(appliedIndex, 10)})

      if appliedIndex < confirmedIndex {
         select {
         case <-s.applyWait.Wait(confirmedIndex):
         case <-s.stopping:
            return
         }
      }
      // unblock all l-reads requested at indices before confirmedIndex
      nr.notify(nil)
      trace.Step("applied index is now lower than readState.Index")

      trace.LogAllStepsIfLong(traceThreshold)
   }
}

confirmedIndex, err := s.requestCurrentIndex(leaderChangedNotifier, requestId)

requestId每次都會生成,目的是區分每一次的讀,因為raft在自旋,讀取的操作也可能是並發,所以需要有唯一區分的identity

s.readwaitc,server中專門為讀一致創建的channel,生成完requestId後,會block在這裡,等待signal來觸發讀一致的後續邏輯

s.readNotifier 讀一致通知的channel,appliedIndex >= confirmedIndex 時,通過這個channel通知調用者,讀一致的邏輯已經完成

Request of read current index

func (s *EtcdServer) requestCurrentIndex(leaderChangedNotifier <-chan struct{}, requestId uint64) (uint64, error) {
   err := s.sendReadIndex(requestId)
   if err != nil {
      return 0, err
   }

   lg := s.Logger()
   errorTimer := time.NewTimer(s.Cfg.ReqTimeout())
   defer errorTimer.Stop()
   retryTimer := time.NewTimer(readIndexRetryTime)
   defer retryTimer.Stop()

   firstCommitInTermNotifier := s.FirstCommitInTermNotify()

   for {
      select {
      case rs := <-s.r.readStateC:
         requestIdBytes := uint64ToBigEndianBytes(requestId)
         gotOwnResponse := bytes.Equal(rs.RequestCtx, requestIdBytes)
         if !gotOwnResponse {
            // a previous request might time out. now we should ignore the response of it and
            // continue waiting for the response of the current requests.
            responseId := uint64(0)
            if len(rs.RequestCtx) == 8 {
               responseId = binary.BigEndian.Uint64(rs.RequestCtx)
            }
            lg.Warn(
               "ignored out-of-date read index response; local node read indexes queueing up and waiting to be in sync with leader",
               zap.Uint64("sent-request-id", requestId),
               zap.Uint64("received-request-id", responseId),
            )
            slowReadIndex.Inc()
            continue
         }
         return rs.Index, nil
      case <-leaderChangedNotifier:
         readIndexFailed.Inc()
         // return a retryable error.
         return 0, ErrLeaderChanged
      case <-firstCommitInTermNotifier:
         firstCommitInTermNotifier = s.FirstCommitInTermNotify()
         lg.Info("first commit in current term: resending ReadIndex request")
         err := s.sendReadIndex(requestId)
         if err != nil {
            return 0, err
         }
         retryTimer.Reset(readIndexRetryTime)
         continue
      case <-retryTimer.C:
         lg.Warn(
            "waiting for ReadIndex response took too long, retrying",
            zap.Uint64("sent-request-id", requestId),
            zap.Duration("retry-timeout", readIndexRetryTime),
         )
         err := s.sendReadIndex(requestId)
         if err != nil {
            return 0, err
         }
         retryTimer.Reset(readIndexRetryTime)
         continue
      case <-errorTimer.C:
         lg.Warn(
            "timed out waiting for read index response (local node might have slow network)",
            zap.Duration("timeout", s.Cfg.ReqTimeout()),
         )
         slowReadIndex.Inc()
         return 0, ErrTimeout
      case <-s.stopping:
         return 0, ErrStopped
      }
   }
}

s.sendReadIndex(requestId),包裹requestId,將消息向raft模塊傳遞

func (n *node) ReadIndex(ctx context.Context, rctx []byte) error {
   return n.step(ctx, pb.Message{Type: pb.MsgReadIndex, Entries: []pb.Entry{{Data: rctx}}})
}

會將消息下放到raft模塊中stepFunc來處理

如果是follower,會發送至leader

case pb.MsgReadIndex:
   if r.lead == None {
      r.logger.Infof("%x no leader at term %d; dropping index reading msg", r.id, r.Term)
      return nil
   }
   m.To = r.lead
   r.send(m)

如果是leader

case pb.MsgReadIndex:
   // only one voting member (the leader) in the cluster
   if r.prs.IsSingleton() {
      if resp := r.responseToReadIndexReq(m, r.raftLog.committed); resp.To != None {
         r.send(resp)
      }
      return nil
   }

   // Postpone read only request when this leader has not committed
   // any log entry at its term.
   if !r.committedEntryInCurrentTerm() {
      r.pendingReadIndexMessages = append(r.pendingReadIndexMessages, m)
      return nil
   }

   sendMsgReadIndexResponse(r, m)

   return nil

sendMsgReadIndexResponse(r, m) 回復read index給請求者

func sendMsgReadIndexResponse(r *raft, m pb.Message) {
   // thinking: use an internally defined context instead of the user given context.
   // We can express this in terms of the term and index instead of a user-supplied value.
   // This would allow multiple reads to piggyback on the same message.
   switch r.readOnly.option {
   // If more than the local vote is needed, go through a full broadcast.
   case ReadOnlySafe:
      r.readOnly.addRequest(r.raftLog.committed, m)
      // The local node automatically acks the request.
      r.readOnly.recvAck(r.id, m.Entries[0].Data)
      r.bcastHeartbeatWithCtx(m.Entries[0].Data)
   case ReadOnlyLeaseBased:
      if resp := r.responseToReadIndexReq(m, r.raftLog.committed); resp.To != None {
         r.send(resp)
      }
   }
}

可以得知,不論哪種情況,leader都會將 commited index 作為read index 回復給請求者

func (r *raft) responseToReadIndexReq(req pb.Message, readIndex uint64) pb.Message {
   if req.From == None || req.From == r.id {
      r.readStates = append(r.readStates, ReadState{
         Index:      readIndex,
         RequestCtx: req.Entries[0].Data,
      })
      return pb.Message{}
   }
   return pb.Message{
      Type:    pb.MsgReadIndexResp,
      To:      req.From,
      Index:   readIndex,
      Entries: req.Entries,
   }
}

Response of read current index

當follower接收到 MsgReadIndexResp後

case pb.MsgReadIndexResp:
   if len(m.Entries) != 1 {
      r.logger.Errorf("%x invalid format of MsgReadIndexResp from %x, entries count: %d", r.id, m.From, len(m.Entries))
      return nil
   }
   r.readStates = append(r.readStates, ReadState{Index: m.Index, RequestCtx: m.Entries[0].Data})

RequestCtx: m.Entries[0].Data} 這裡放的就是 requestId

回到 request current index

for {
		select {
		case rs := <-s.r.readStateC:
			requestIdBytes := uint64ToBigEndianBytes(requestId)
			gotOwnResponse := bytes.Equal(rs.RequestCtx, requestIdBytes)
			if !gotOwnResponse {
				// a previous request might time out. now we should ignore the response of it and
				// continue waiting for the response of the current requests.
				responseId := uint64(0)
				if len(rs.RequestCtx) == 8 {
					responseId = binary.BigEndian.Uint64(rs.RequestCtx)
				}
				lg.Warn(
					"ignored out-of-date read index response; local node read indexes queueing up and waiting to be in sync with leader",
					zap.Uint64("sent-request-id", requestId),
					zap.Uint64("received-request-id", responseId),
				)
				slowReadIndex.Inc()
				continue
			}
			return rs.Index, nil

s.r.readStateC 是在 raft Ready裏面傳過來的

if len(rd.ReadStates) != 0 {
   select {
   case r.readStateC <- rd.ReadStates[len(rd.ReadStates)-1]:
   case <-time.After(internalTimeout):
      r.lg.Warn("timed out sending read state", zap.Duration("timeout", internalTimeout))
   case <-r.stopped:
      return
   }
}

因為 read current index中的for循環,直到 requestId相等,返回readIndex至 linearizableReadLoop

再回到 linearizableReadLoop

for {
   requestId := s.reqIDGen.Next()
   leaderChangedNotifier := s.LeaderChangedNotify()
   select {
   case <-leaderChangedNotifier:
      continue
   case <-s.readwaitc:
   case <-s.stopping:
      return
   }
   //省略若干
   if appliedIndex < confirmedIndex {
			select {
			case <-s.applyWait.Wait(confirmedIndex):
			case <-s.stopping:
				return
			}
		}
		// unblock all l-reads requested at indices before confirmedIndex
		nr.notify(nil)
}

s.applyWait.Wait(confirmedIndex)

leader雖然返回了read index,但還沒有在本節點apply,一定要apply之後才會通知讀一致完成

因為apply 才會存儲,如果沒有存儲,如果集群出現宕機,仍然會有臟讀的可能。

// unblock all l-reads requested at indices before confirmedIndex
nr.notify(nil)

通知讀一致處理完成。

Summary

從follower讀取leader當前的commited index,follower接收到後,直到apply完成,這幾個步驟構成了避免的臟讀的過程。

所以返回的數據是當前時間點內部一致的。

Tags: