從Go語言編碼角度解釋實現簡易區塊鏈——實現交易

  • 2019 年 10 月 30 日
  • 筆記

在公鏈基礎上實現區塊鏈交易

區塊鏈的目的,是能夠安全可靠的存儲交易,比如我們常見的比特幣的交易,這裡我們會以比特幣為例實現區塊鏈上的通用交易。上一節用簡單的數據結構完成了區塊鏈的公鏈,本節在此基礎上對區塊鏈的交易部分進行實現。實現公鏈

交易機制

在區塊鏈中,交易一旦被創建,就沒有任何人能夠再去修改或是刪除它,本節將實現一個交易的基本框架,具體交易細節將會在之後給出。

以比特幣為例,不同於一般概念的賬戶模型,其交易採用的是UTXO模型。我們所需要的信息,都間接的包含在了每一筆交易中,包括用戶的餘額信息。

對於每一筆交易,你可以想像成一個通道,通道的左端有若干個輸入信息,通道的右端會有若干輸出信息。輸入信息代表的意義是,該交易所用的幣是從何而來,一條交易可以有0到多個幣源(0是特殊情況,即被挖出的礦,因為沒有用戶來源,所以沒有輸入信息)。輸出信息代表的意義是,進行該交易後,數字貨幣變動到哪裡去了。因此,一條交易信息中貨幣的輸入數量與輸出數量應該是等價的,數字貨幣的來源總和,等於數字貨幣的輸出總和。不難想像,與傳統的賬戶模型相比,在UTXO模型中用戶的賬戶餘額是記錄在交易的輸出部分。

舉個最簡單的例子,假設A需要給B支付了一個比特幣,將執行以下流程:

  1. 查看當前已有的交易信息,找到交易輸出指向自己的交易並將餘額計入總和
  2. 判斷當前交易信息輸出中是否有足夠的數字貨幣屬於自己
  3. 當餘額不足時,提示餘額不足信息
  4. 當餘額充足時,新建一條交易,即一個UTXO
  5. 該UTXO的輸出信息是消費用戶的部分餘額(不需要消費用戶的所有餘額,只要滿足夠用就行),而用戶的餘額是記錄在之前已有的UTXO的輸出中,所以新交易的輸入,便是之前某些交易的輸出。
  6. 當用戶找到的餘額數量與本次交易所需的數量不相等時,用戶可以將剩下的貨幣再向自己輸出,即找零,以保證交易的輸入與輸出相等

這樣我們就實現了一個簡單的交易,在這場交易中有貨幣的來源,貨幣有明確的去向,同時攜帶了我們正在進行的交易信息。

之後我們將結合代碼,讓這種邏輯變得更加清晰,下面這張圖是對UTXO模型的簡單描述:
在這裡插入圖片描述
Coinbase交易是特殊的一種交易,它表示礦工挖出了新的礦,作用是將新挖出的礦加入公鏈中並將輸出指向挖礦的礦工。

該例子表示,張三挖礦得到12.5個比特幣,然後支付了2.5個給李四,自己剩餘10比特幣,之後張三李四各支付2.5個比特幣給王五,最終張三還剩7.5個比特幣,李四餘額用盡,王五剩餘5個比特幣,總和12.5等於張三挖出的總礦幣。

編碼實現

與之前已經完成的實現公鏈的代碼相比,區塊鏈的交易需要新建一個transaction.go文件,用來實現交易邏輯。其餘文件中的代碼,會跟隨交易機制的加入進行微小的調整。

transaction.go

以下為transaction.go的代碼:

package main    import (      "bytes"      "crypto/sha256"      "encoding/gob"      "encoding/hex"      "fmt"      "log"  )    const subsidy = 10    // Transaction represents a Bitcoin transaction  type Transaction struct {      ID   []byte      Vin  []TXInput      Vout []TXOutput  }    // IsCoinbase checks whether the transaction is coinbase  func (tx Transaction) IsCoinbase() bool {      return len(tx.Vin) == 1 && len(tx.Vin[0].Txid) == 0 && tx.Vin[0].Vout == -1  }    // SetID sets ID of a transaction  func (tx *Transaction) SetID() {      var encoded bytes.Buffer      var hash [32]byte        enc := gob.NewEncoder(&encoded)      err := enc.Encode(tx)      if err != nil {          log.Panic(err)      }      hash = sha256.Sum256(encoded.Bytes())      tx.ID = hash[:]  }    // TXInput represents a transaction input  type TXInput struct {      Txid      []byte      Vout      int      ScriptSig string  }    // TXOutput represents a transaction output  type TXOutput struct {      Value        int      ScriptPubKey string  }    // CanUnlockOutputWith checks whether the address initiated the transaction  func (in *TXInput) CanUnlockOutputWith(unlockingData string) bool {      return in.ScriptSig == unlockingData  }    // CanBeUnlockedWith checks if the output can be unlocked with the provided data  func (out *TXOutput) CanBeUnlockedWith(unlockingData string) bool {      return out.ScriptPubKey == unlockingData  }    // NewCoinbaseTX creates a new coinbase transaction  func NewCoinbaseTX(to, data string) *Transaction {      if data == "" {          data = fmt.Sprintf("Reward to '%s'", to)      }        txin := TXInput{[]byte{}, -1, data}      txout := TXOutput{subsidy, to}      tx := Transaction{nil, []TXInput{txin}, []TXOutput{txout}}      tx.SetID()        return &tx  }    // NewUTXOTransaction creates a new transaction  func NewUTXOTransaction(from, to string, amount int, bc *Blockchain) *Transaction {      var inputs []TXInput      var outputs []TXOutput        acc, validOutputs := bc.FindSpendableOutputs(from, amount)        if acc < amount {          log.Panic("ERROR: Not enough funds")      }        // Build a list of inputs      for txid, outs := range validOutputs {          txID, err := hex.DecodeString(txid)          if err != nil {              log.Panic(err)          }            for _, out := range outs {              input := TXInput{txID, out, from}              inputs = append(inputs, input)          }      }        // Build a list of outputs      outputs = append(outputs, TXOutput{amount, to})      if acc > amount {          outputs = append(outputs, TXOutput{acc - amount, from}) // a change      }        tx := Transaction{nil, inputs, outputs}      tx.SetID()        return &tx  }

代碼主要包含以下內容:

  • Transaction 結構體,包含當前交易的ID(交易需要ID)、輸入數組以及輸出數組
  • IsCoinbase函數,用來判斷當前交易是否是Coinbase交易(挖礦交易)
  • SetID函數給交易設置id
  • TXInput 結構體,包含輸入的某條交易的id,該交易某個輸出的金額與地址
  • TXOutput 結構體,包含當前交易的某個輸出的金額與地址
  • CanUnlockOutputWith函數判斷提供的地址能否匹配某條交易記錄的輸入地址
  • CanBeUnlockedWith函數判斷提供的地址能否匹配某條交易記錄的輸出地址
  • NewCoinbaseTX函數創建一條挖礦交易
  • NewUTXOTransaction函數創建一條新的交易

關於TXInput與TXOutput中地址的問題,因為目前還沒有實現區塊鏈中的地址,所以本節涉及的地址直接用字符串代替,驗證地址也只是進行了字符串對比。地址是必要的,它標註了當前的餘額屬於誰,這裡因為剛實現交易機制,還沒有引入真正的地址機制,所以是存在漏洞的,用戶只要知道有哪些用戶就可以直接往自己地址轉錢,在下一節會實現地址機制進行完善。

block.go

在transaction.go中實現了交易的結構體,如何創建一條新的交易,以及簡單的交易對象判斷。在其餘文件中,block.go文件做了一些改動,主要是將原本的data字符串換成了Transaction交易。同樣的,下一節中我們會將本節的地址字符串換成相應機制的地址,以下是改動後的block.go文件:

package main    import (      "bytes"      "crypto/sha256"      "encoding/gob"      "log"      "time"  )    // Block keeps block headers  type Block struct {      Timestamp     int64      Transactions  []*Transaction      PrevBlockHash []byte      Hash          []byte      Nonce         int  }    // Serialize serializes the block  func (b *Block) Serialize() []byte {      var result bytes.Buffer      encoder := gob.NewEncoder(&result)        err := encoder.Encode(b)      if err != nil {          log.Panic(err)      }        return result.Bytes()  }    // HashTransactions returns a hash of the transactions in the block  func (b *Block) HashTransactions() []byte {      var txHashes [][]byte      var txHash [32]byte        for _, tx := range b.Transactions {          txHashes = append(txHashes, tx.ID)      }      txHash = sha256.Sum256(bytes.Join(txHashes, []byte{}))        return txHash[:]  }    // NewBlock creates and returns Block  func NewBlock(transactions []*Transaction, prevBlockHash []byte) *Block {      block := &Block{time.Now().Unix(), transactions, prevBlockHash, []byte{}, 0}      pow := NewProofOfWork(block)      nonce, hash := pow.Run()        block.Hash = hash[:]      block.Nonce = nonce        return block  }    // NewGenesisBlock creates and returns genesis Block  func NewGenesisBlock(coinbase *Transaction) *Block {      return NewBlock([]*Transaction{coinbase}, []byte{})  }    // DeserializeBlock deserializes a block  func DeserializeBlock(d []byte) *Block {      var block Block        decoder := gob.NewDecoder(bytes.NewReader(d))      err := decoder.Decode(&block)      if err != nil {          log.Panic(err)      }        return &block  }

添加了HashTransactions函數,用來將交易轉換成哈希值,其餘函數隨結構體中Data->Transactions的變動相應調整。

blockchain.go

在blockchain.go中,涉及到尋找用戶餘額(未花費交易輸出)操作,需要多做一些調整:

package main    import (      "encoding/hex"      "fmt"      "log"      "os"      "bolt-master"  )    const dbFile = "blockchain.db"  const blocksBucket = "blocks"  const genesisCoinbaseData = "The Times 03/Jan/2009 Chancellor on brink of second bailout for banks"    // Blockchain implements interactions with a DB  type Blockchain struct {      tip []byte      db  *bolt.DB  }    // BlockchainIterator is used to iterate over blockchain blocks  type BlockchainIterator struct {      currentHash []byte      db          *bolt.DB  }    // MineBlock mines a new block with the provided transactions  func (bc *Blockchain) MineBlock(transactions []*Transaction) {      var lastHash []byte        err := bc.db.View(func(tx *bolt.Tx) error {          b := tx.Bucket([]byte(blocksBucket))          lastHash = b.Get([]byte("l"))            return nil      })        if err != nil {          log.Panic(err)      }        newBlock := NewBlock(transactions, lastHash)        err = bc.db.Update(func(tx *bolt.Tx) error {          b := tx.Bucket([]byte(blocksBucket))          err := b.Put(newBlock.Hash, newBlock.Serialize())          if err != nil {              log.Panic(err)          }            err = b.Put([]byte("l"), newBlock.Hash)          if err != nil {              log.Panic(err)          }            bc.tip = newBlock.Hash            return nil      })  }    // FindUnspentTransactions returns a list of transactions containing unspent outputs  func (bc *Blockchain) FindUnspentTransactions(address string) []Transaction {      var unspentTXs []Transaction      spentTXOs := make(map[string][]int)      bci := bc.Iterator()        for {          block := bci.Next()            for _, tx := range block.Transactions {              txID := hex.EncodeToString(tx.ID)            Outputs:              for outIdx, out := range tx.Vout {                  // Was the output spent?                  if spentTXOs[txID] != nil {                      for _, spentOut := range spentTXOs[txID] {                          if spentOut == outIdx {                              continue Outputs                          }                      }                  }                    if out.CanBeUnlockedWith(address) {                      unspentTXs = append(unspentTXs, *tx)                  }              }                if tx.IsCoinbase() == false {                  for _, in := range tx.Vin {                      if in.CanUnlockOutputWith(address) {                          inTxID := hex.EncodeToString(in.Txid)                          spentTXOs[inTxID] = append(spentTXOs[inTxID], in.Vout)                      }                  }              }          }            if len(block.PrevBlockHash) == 0 {              break          }      }        return unspentTXs  }    // FindUTXO finds and returns all unspent transaction outputs  func (bc *Blockchain) FindUTXO(address string) []TXOutput {      var UTXOs []TXOutput      unspentTransactions := bc.FindUnspentTransactions(address)        for _, tx := range unspentTransactions {          for _, out := range tx.Vout {              if out.CanBeUnlockedWith(address) {                  UTXOs = append(UTXOs, out)              }          }      }        return UTXOs  }    // FindSpendableOutputs finds and returns unspent outputs to reference in inputs  func (bc *Blockchain) FindSpendableOutputs(address string, amount int) (int, map[string][]int) {      unspentOutputs := make(map[string][]int)      unspentTXs := bc.FindUnspentTransactions(address)      accumulated := 0    Work:      for _, tx := range unspentTXs {          txID := hex.EncodeToString(tx.ID)            for outIdx, out := range tx.Vout {              if out.CanBeUnlockedWith(address) && accumulated < amount {                  accumulated += out.Value                  unspentOutputs[txID] = append(unspentOutputs[txID], outIdx)                    if accumulated >= amount {                      break Work                  }              }          }      }        return accumulated, unspentOutputs  }    // Iterator returns a BlockchainIterat  func (bc *Blockchain) Iterator() *BlockchainIterator {      bci := &BlockchainIterator{bc.tip, bc.db}        return bci  }    // Next returns next block starting from the tip  func (i *BlockchainIterator) Next() *Block {      var block *Block        err := i.db.View(func(tx *bolt.Tx) error {          b := tx.Bucket([]byte(blocksBucket))          encodedBlock := b.Get(i.currentHash)          block = DeserializeBlock(encodedBlock)            return nil      })        if err != nil {          log.Panic(err)      }        i.currentHash = block.PrevBlockHash        return block  }    func dbExists() bool {      if _, err := os.Stat(dbFile); os.IsNotExist(err) {          return false      }        return true  }    // NewBlockchain creates a new Blockchain with genesis Block  func NewBlockchain(address string) *Blockchain {      if dbExists() == false {          fmt.Println("No existing blockchain found. Create one first.")          os.Exit(1)      }        var tip []byte      db, err := bolt.Open(dbFile, 0600, nil)      if err != nil {          log.Panic(err)      }        err = db.Update(func(tx *bolt.Tx) error {          b := tx.Bucket([]byte(blocksBucket))          tip = b.Get([]byte("l"))            return nil      })        if err != nil {          log.Panic(err)      }        bc := Blockchain{tip, db}        return &bc  }    // CreateBlockchain creates a new blockchain DB  func CreateBlockchain(address string) *Blockchain {      if dbExists() {          fmt.Println("Blockchain already exists.")          os.Exit(1)      }        var tip []byte      db, err := bolt.Open(dbFile, 0600, nil)      if err != nil {          log.Panic(err)      }        err = db.Update(func(tx *bolt.Tx) error {          cbtx := NewCoinbaseTX(address, genesisCoinbaseData)          genesis := NewGenesisBlock(cbtx)            b, err := tx.CreateBucket([]byte(blocksBucket))          if err != nil {              log.Panic(err)          }            err = b.Put(genesis.Hash, genesis.Serialize())          if err != nil {              log.Panic(err)          }            err = b.Put([]byte("l"), genesis.Hash)          if err != nil {              log.Panic(err)          }          tip = genesis.Hash            return nil      })        if err != nil {          log.Panic(err)      }        bc := Blockchain{tip, db}        return &bc  }

代碼的主要變動是新增了三個關於交易的函數:

  • FindUnspendTransactions遍歷公鏈,尋找交易信息中沒有被使用過輸出的交易,即未被花費過的餘額。當一條交易中的餘額被其他交易用做過輸入,該餘額也就不在具有餘額的屬性,不能再次被交易
  • FindUTXO在內部調用了FindUnspendTransactions函數,與FindUnspendTransactions不同的是它用於查詢用戶的餘額信息,即所有有效未花費餘額的總和
  • FindSpendableOutputs在內部調用了FindUnspendTransactions函數,用於找出哪些餘額是可用的

其次,原本的Addblock被改成了更具體的Mineblock挖礦函數,新增了Createblockchain函數和dbExists函數,用來判斷數據庫是否存在,只有當數據庫中沒有公鏈時才能創建新的區塊鏈。

proofofwork.go

在proofofwork文件中,僅在prepareData時將Data換成了HashTransactions,在挖礦時不再打印Data部分,proofofwork.go完整代碼如下:

package main    import (      "bytes"      "crypto/sha256"      "fmt"      "math"      "math/big"  )    var (      maxNonce = math.MaxInt64  )    const targetBits = 24    // ProofOfWork represents a proof-of-work  type ProofOfWork struct {      block  *Block      target *big.Int  }    // NewProofOfWork builds and returns a ProofOfWork  func NewProofOfWork(b *Block) *ProofOfWork {      target := big.NewInt(1)      target.Lsh(target, uint(256-targetBits))        pow := &ProofOfWork{b, target}        return pow  }    func (pow *ProofOfWork) prepareData(nonce int) []byte {      data := bytes.Join(          [][]byte{              pow.block.PrevBlockHash,              pow.block.HashTransactions(),              IntToHex(pow.block.Timestamp),              IntToHex(int64(targetBits)),              IntToHex(int64(nonce)),          },          []byte{},      )        return data  }    // Run performs a proof-of-work  func (pow *ProofOfWork) Run() (int, []byte) {      var hashInt big.Int      var hash [32]byte      nonce := 0        fmt.Printf("Mining a new block")      for nonce < maxNonce {          data := pow.prepareData(nonce)            hash = sha256.Sum256(data)          // fmt.Printf("r%x", hash)          hashInt.SetBytes(hash[:])            if hashInt.Cmp(pow.target) == -1 {              break          } else {              nonce++          }      }      // fmt.Print("nn")        return nonce, hash[:]  }    // Validate validates block's PoW  func (pow *ProofOfWork) Validate() bool {      var hashInt big.Int        data := pow.prepareData(pow.block.Nonce)      hash := sha256.Sum256(data)      hashInt.SetBytes(hash[:])        isValid := hashInt.Cmp(pow.target) == -1        return isValid  }

cli.go

cli.go文件隨底層的一些變動,做出相應的業務邏輯改變,變動主要用於實現命令行操作,不涉及區塊鏈的邏輯:

package main    import (      "flag"      "fmt"      "log"      "os"      "strconv"  )    // CLI responsible for processing command line arguments  type CLI struct{}    func (cli *CLI) createBlockchain(address string) {      bc := CreateBlockchain(address)      bc.db.Close()      fmt.Println("Done!")  }    func (cli *CLI) getBalance(address string) {      bc := NewBlockchain(address)      defer bc.db.Close()        balance := 0      UTXOs := bc.FindUTXO(address)        for _, out := range UTXOs {          balance += out.Value      }        fmt.Printf("Balance of '%s': %dn", address, balance)  }    func (cli *CLI) printUsage() {      fmt.Println("Usage:")      fmt.Println("  getbalance -address ADDRESS - Get balance of ADDRESS")      fmt.Println("  createblockchain -address ADDRESS - Create a blockchain and send genesis block reward to ADDRESS")      fmt.Println("  printchain - Print all the blocks of the blockchain")      fmt.Println("  send -from FROM -to TO -amount AMOUNT - Send AMOUNT of coins from FROM address to TO")  }    func (cli *CLI) validateArgs() {      if len(os.Args) < 2 {          cli.printUsage()          os.Exit(1)      }  }    func (cli *CLI) printChain() {      // TODO: Fix this      bc := NewBlockchain("")      defer bc.db.Close()        bci := bc.Iterator()        for {          block := bci.Next()            fmt.Printf("Prev. hash: %xn", block.PrevBlockHash)          fmt.Printf("Hash: %xn", block.Hash)          pow := NewProofOfWork(block)          fmt.Printf("PoW: %sn", strconv.FormatBool(pow.Validate()))          fmt.Println()            if len(block.PrevBlockHash) == 0 {              break          }      }  }    func (cli *CLI) send(from, to string, amount int) {      bc := NewBlockchain(from)      defer bc.db.Close()        tx := NewUTXOTransaction(from, to, amount, bc)      bc.MineBlock([]*Transaction{tx})      fmt.Println("Success!")  }    // Run parses command line arguments and processes commands  func (cli *CLI) Run() {      cli.validateArgs()        getBalanceCmd := flag.NewFlagSet("getbalance", flag.ExitOnError)      createBlockchainCmd := flag.NewFlagSet("createblockchain", flag.ExitOnError)      sendCmd := flag.NewFlagSet("send", flag.ExitOnError)      printChainCmd := flag.NewFlagSet("printchain", flag.ExitOnError)        getBalanceAddress := getBalanceCmd.String("address", "", "The address to get balance for")      createBlockchainAddress := createBlockchainCmd.String("address", "", "The address to send genesis block reward to")      sendFrom := sendCmd.String("from", "", "Source wallet address")      sendTo := sendCmd.String("to", "", "Destination wallet address")      sendAmount := sendCmd.Int("amount", 0, "Amount to send")        switch os.Args[1] {      case "getbalance":          err := getBalanceCmd.Parse(os.Args[2:])          if err != nil {              log.Panic(err)          }      case "createblockchain":          err := createBlockchainCmd.Parse(os.Args[2:])          if err != nil {              log.Panic(err)          }      case "printchain":          err := printChainCmd.Parse(os.Args[2:])          if err != nil {              log.Panic(err)          }      case "send":          err := sendCmd.Parse(os.Args[2:])          if err != nil {              log.Panic(err)          }      default:          cli.printUsage()          os.Exit(1)      }        if getBalanceCmd.Parsed() {          if *getBalanceAddress == "" {              getBalanceCmd.Usage()              os.Exit(1)          }          cli.getBalance(*getBalanceAddress)      }        if createBlockchainCmd.Parsed() {          if *createBlockchainAddress == "" {              createBlockchainCmd.Usage()              os.Exit(1)          }          cli.createBlockchain(*createBlockchainAddress)      }        if printChainCmd.Parsed() {          cli.printChain()      }        if sendCmd.Parsed() {          if *sendFrom == "" || *sendTo == "" || *sendAmount <= 0 {              sendCmd.Usage()              os.Exit(1)          }            cli.send(*sendFrom, *sendTo, *sendAmount)      }  }

main.go

在main.go中,我們將所有的操作有交給cli對象進行,原本舊main.go中的新建創世塊操作,也放到了cli.go的邏輯中,所以只需要以下代碼:

package main    func main() {      bc := NewBlockchain()      defer bc.db.Close()        cli := CLI{bc}      cli.Run()  }

utils.go

沒有新的工具函數引入,utils.go文件不變。

在下一節,將實現區塊鏈的地址機制,逐步完善整個區塊鏈。