從Go語言編碼角度解釋實現簡易區塊鏈——實現交易
- 2019 年 10 月 30 日
- 筆記
在公鏈基礎上實現區塊鏈交易
區塊鏈的目的,是能夠安全可靠的存儲交易,比如我們常見的比特幣的交易,這裡我們會以比特幣為例實現區塊鏈上的通用交易。上一節用簡單的數據結構完成了區塊鏈的公鏈,本節在此基礎上對區塊鏈的交易部分進行實現。實現公鏈
交易機制
在區塊鏈中,交易一旦被創建,就沒有任何人能夠再去修改或是刪除它,本節將實現一個交易的基本框架,具體交易細節將會在之後給出。
以比特幣為例,不同於一般概念的賬戶模型,其交易採用的是UTXO模型。我們所需要的信息,都間接的包含在了每一筆交易中,包括用戶的餘額信息。
對於每一筆交易,你可以想像成一個通道,通道的左端有若干個輸入信息,通道的右端會有若干輸出信息。輸入信息代表的意義是,該交易所用的幣是從何而來,一條交易可以有0到多個幣源(0是特殊情況,即被挖出的礦,因為沒有用戶來源,所以沒有輸入信息)。輸出信息代表的意義是,進行該交易後,數字貨幣變動到哪裡去了。因此,一條交易信息中貨幣的輸入數量與輸出數量應該是等價的,數字貨幣的來源總和,等於數字貨幣的輸出總和。不難想像,與傳統的賬戶模型相比,在UTXO模型中用戶的賬戶餘額是記錄在交易的輸出部分。
舉個最簡單的例子,假設A需要給B支付了一個比特幣,將執行以下流程:
- 查看當前已有的交易信息,找到交易輸出指向自己的交易並將餘額計入總和
- 判斷當前交易信息輸出中是否有足夠的數字貨幣屬於自己
- 當餘額不足時,提示餘額不足信息
- 當餘額充足時,新建一條交易,即一個UTXO
- 該UTXO的輸出信息是消費用戶的部分餘額(不需要消費用戶的所有餘額,只要滿足夠用就行),而用戶的餘額是記錄在之前已有的UTXO的輸出中,所以新交易的輸入,便是之前某些交易的輸出。
- 當用戶找到的餘額數量與本次交易所需的數量不相等時,用戶可以將剩下的貨幣再向自己輸出,即找零,以保證交易的輸入與輸出相等
這樣我們就實現了一個簡單的交易,在這場交易中有貨幣的來源,貨幣有明確的去向,同時攜帶了我們正在進行的交易信息。
之後我們將結合代碼,讓這種邏輯變得更加清晰,下面這張圖是對UTXO模型的簡單描述:
Coinbase交易是特殊的一種交易,它表示礦工挖出了新的礦,作用是將新挖出的礦加入公鏈中並將輸出指向挖礦的礦工。
該例子表示,張三挖礦得到12.5個比特幣,然後支付了2.5個給李四,自己剩餘10比特幣,之後張三李四各支付2.5個比特幣給王五,最終張三還剩7.5個比特幣,李四餘額用盡,王五剩餘5個比特幣,總和12.5等於張三挖出的總礦幣。
編碼實現
與之前已經完成的實現公鏈的代碼相比,區塊鏈的交易需要新建一個transaction.go文件,用來實現交易邏輯。其餘文件中的代碼,會跟隨交易機制的加入進行微小的調整。
transaction.go
以下為transaction.go的代碼:
package main import ( "bytes" "crypto/sha256" "encoding/gob" "encoding/hex" "fmt" "log" ) const subsidy = 10 // Transaction represents a Bitcoin transaction type Transaction struct { ID []byte Vin []TXInput Vout []TXOutput } // IsCoinbase checks whether the transaction is coinbase func (tx Transaction) IsCoinbase() bool { return len(tx.Vin) == 1 && len(tx.Vin[0].Txid) == 0 && tx.Vin[0].Vout == -1 } // SetID sets ID of a transaction func (tx *Transaction) SetID() { var encoded bytes.Buffer var hash [32]byte enc := gob.NewEncoder(&encoded) err := enc.Encode(tx) if err != nil { log.Panic(err) } hash = sha256.Sum256(encoded.Bytes()) tx.ID = hash[:] } // TXInput represents a transaction input type TXInput struct { Txid []byte Vout int ScriptSig string } // TXOutput represents a transaction output type TXOutput struct { Value int ScriptPubKey string } // CanUnlockOutputWith checks whether the address initiated the transaction func (in *TXInput) CanUnlockOutputWith(unlockingData string) bool { return in.ScriptSig == unlockingData } // CanBeUnlockedWith checks if the output can be unlocked with the provided data func (out *TXOutput) CanBeUnlockedWith(unlockingData string) bool { return out.ScriptPubKey == unlockingData } // NewCoinbaseTX creates a new coinbase transaction func NewCoinbaseTX(to, data string) *Transaction { if data == "" { data = fmt.Sprintf("Reward to '%s'", to) } txin := TXInput{[]byte{}, -1, data} txout := TXOutput{subsidy, to} tx := Transaction{nil, []TXInput{txin}, []TXOutput{txout}} tx.SetID() return &tx } // NewUTXOTransaction creates a new transaction func NewUTXOTransaction(from, to string, amount int, bc *Blockchain) *Transaction { var inputs []TXInput var outputs []TXOutput acc, validOutputs := bc.FindSpendableOutputs(from, amount) if acc < amount { log.Panic("ERROR: Not enough funds") } // Build a list of inputs for txid, outs := range validOutputs { txID, err := hex.DecodeString(txid) if err != nil { log.Panic(err) } for _, out := range outs { input := TXInput{txID, out, from} inputs = append(inputs, input) } } // Build a list of outputs outputs = append(outputs, TXOutput{amount, to}) if acc > amount { outputs = append(outputs, TXOutput{acc - amount, from}) // a change } tx := Transaction{nil, inputs, outputs} tx.SetID() return &tx }
代碼主要包含以下內容:
- Transaction 結構體,包含當前交易的ID(交易需要ID)、輸入數組以及輸出數組
- IsCoinbase函數,用來判斷當前交易是否是Coinbase交易(挖礦交易)
- SetID函數給交易設置id
- TXInput 結構體,包含輸入的某條交易的id,該交易某個輸出的金額與地址
- TXOutput 結構體,包含當前交易的某個輸出的金額與地址
- CanUnlockOutputWith函數判斷提供的地址能否匹配某條交易記錄的輸入地址
- CanBeUnlockedWith函數判斷提供的地址能否匹配某條交易記錄的輸出地址
- NewCoinbaseTX函數創建一條挖礦交易
- NewUTXOTransaction函數創建一條新的交易
關於TXInput與TXOutput中地址的問題,因為目前還沒有實現區塊鏈中的地址,所以本節涉及的地址直接用字符串代替,驗證地址也只是進行了字符串對比。地址是必要的,它標註了當前的餘額屬於誰,這裡因為剛實現交易機制,還沒有引入真正的地址機制,所以是存在漏洞的,用戶只要知道有哪些用戶就可以直接往自己地址轉錢,在下一節會實現地址機制進行完善。
block.go
在transaction.go中實現了交易的結構體,如何創建一條新的交易,以及簡單的交易對象判斷。在其餘文件中,block.go文件做了一些改動,主要是將原本的data字符串換成了Transaction交易。同樣的,下一節中我們會將本節的地址字符串換成相應機制的地址,以下是改動後的block.go文件:
package main import ( "bytes" "crypto/sha256" "encoding/gob" "log" "time" ) // Block keeps block headers type Block struct { Timestamp int64 Transactions []*Transaction PrevBlockHash []byte Hash []byte Nonce int } // Serialize serializes the block func (b *Block) Serialize() []byte { var result bytes.Buffer encoder := gob.NewEncoder(&result) err := encoder.Encode(b) if err != nil { log.Panic(err) } return result.Bytes() } // HashTransactions returns a hash of the transactions in the block func (b *Block) HashTransactions() []byte { var txHashes [][]byte var txHash [32]byte for _, tx := range b.Transactions { txHashes = append(txHashes, tx.ID) } txHash = sha256.Sum256(bytes.Join(txHashes, []byte{})) return txHash[:] } // NewBlock creates and returns Block func NewBlock(transactions []*Transaction, prevBlockHash []byte) *Block { block := &Block{time.Now().Unix(), transactions, prevBlockHash, []byte{}, 0} pow := NewProofOfWork(block) nonce, hash := pow.Run() block.Hash = hash[:] block.Nonce = nonce return block } // NewGenesisBlock creates and returns genesis Block func NewGenesisBlock(coinbase *Transaction) *Block { return NewBlock([]*Transaction{coinbase}, []byte{}) } // DeserializeBlock deserializes a block func DeserializeBlock(d []byte) *Block { var block Block decoder := gob.NewDecoder(bytes.NewReader(d)) err := decoder.Decode(&block) if err != nil { log.Panic(err) } return &block }
添加了HashTransactions函數,用來將交易轉換成哈希值,其餘函數隨結構體中Data->Transactions的變動相應調整。
blockchain.go
在blockchain.go中,涉及到尋找用戶餘額(未花費交易輸出)操作,需要多做一些調整:
package main import ( "encoding/hex" "fmt" "log" "os" "bolt-master" ) const dbFile = "blockchain.db" const blocksBucket = "blocks" const genesisCoinbaseData = "The Times 03/Jan/2009 Chancellor on brink of second bailout for banks" // Blockchain implements interactions with a DB type Blockchain struct { tip []byte db *bolt.DB } // BlockchainIterator is used to iterate over blockchain blocks type BlockchainIterator struct { currentHash []byte db *bolt.DB } // MineBlock mines a new block with the provided transactions func (bc *Blockchain) MineBlock(transactions []*Transaction) { var lastHash []byte err := bc.db.View(func(tx *bolt.Tx) error { b := tx.Bucket([]byte(blocksBucket)) lastHash = b.Get([]byte("l")) return nil }) if err != nil { log.Panic(err) } newBlock := NewBlock(transactions, lastHash) err = bc.db.Update(func(tx *bolt.Tx) error { b := tx.Bucket([]byte(blocksBucket)) err := b.Put(newBlock.Hash, newBlock.Serialize()) if err != nil { log.Panic(err) } err = b.Put([]byte("l"), newBlock.Hash) if err != nil { log.Panic(err) } bc.tip = newBlock.Hash return nil }) } // FindUnspentTransactions returns a list of transactions containing unspent outputs func (bc *Blockchain) FindUnspentTransactions(address string) []Transaction { var unspentTXs []Transaction spentTXOs := make(map[string][]int) bci := bc.Iterator() for { block := bci.Next() for _, tx := range block.Transactions { txID := hex.EncodeToString(tx.ID) Outputs: for outIdx, out := range tx.Vout { // Was the output spent? if spentTXOs[txID] != nil { for _, spentOut := range spentTXOs[txID] { if spentOut == outIdx { continue Outputs } } } if out.CanBeUnlockedWith(address) { unspentTXs = append(unspentTXs, *tx) } } if tx.IsCoinbase() == false { for _, in := range tx.Vin { if in.CanUnlockOutputWith(address) { inTxID := hex.EncodeToString(in.Txid) spentTXOs[inTxID] = append(spentTXOs[inTxID], in.Vout) } } } } if len(block.PrevBlockHash) == 0 { break } } return unspentTXs } // FindUTXO finds and returns all unspent transaction outputs func (bc *Blockchain) FindUTXO(address string) []TXOutput { var UTXOs []TXOutput unspentTransactions := bc.FindUnspentTransactions(address) for _, tx := range unspentTransactions { for _, out := range tx.Vout { if out.CanBeUnlockedWith(address) { UTXOs = append(UTXOs, out) } } } return UTXOs } // FindSpendableOutputs finds and returns unspent outputs to reference in inputs func (bc *Blockchain) FindSpendableOutputs(address string, amount int) (int, map[string][]int) { unspentOutputs := make(map[string][]int) unspentTXs := bc.FindUnspentTransactions(address) accumulated := 0 Work: for _, tx := range unspentTXs { txID := hex.EncodeToString(tx.ID) for outIdx, out := range tx.Vout { if out.CanBeUnlockedWith(address) && accumulated < amount { accumulated += out.Value unspentOutputs[txID] = append(unspentOutputs[txID], outIdx) if accumulated >= amount { break Work } } } } return accumulated, unspentOutputs } // Iterator returns a BlockchainIterat func (bc *Blockchain) Iterator() *BlockchainIterator { bci := &BlockchainIterator{bc.tip, bc.db} return bci } // Next returns next block starting from the tip func (i *BlockchainIterator) Next() *Block { var block *Block err := i.db.View(func(tx *bolt.Tx) error { b := tx.Bucket([]byte(blocksBucket)) encodedBlock := b.Get(i.currentHash) block = DeserializeBlock(encodedBlock) return nil }) if err != nil { log.Panic(err) } i.currentHash = block.PrevBlockHash return block } func dbExists() bool { if _, err := os.Stat(dbFile); os.IsNotExist(err) { return false } return true } // NewBlockchain creates a new Blockchain with genesis Block func NewBlockchain(address string) *Blockchain { if dbExists() == false { fmt.Println("No existing blockchain found. Create one first.") os.Exit(1) } var tip []byte db, err := bolt.Open(dbFile, 0600, nil) if err != nil { log.Panic(err) } err = db.Update(func(tx *bolt.Tx) error { b := tx.Bucket([]byte(blocksBucket)) tip = b.Get([]byte("l")) return nil }) if err != nil { log.Panic(err) } bc := Blockchain{tip, db} return &bc } // CreateBlockchain creates a new blockchain DB func CreateBlockchain(address string) *Blockchain { if dbExists() { fmt.Println("Blockchain already exists.") os.Exit(1) } var tip []byte db, err := bolt.Open(dbFile, 0600, nil) if err != nil { log.Panic(err) } err = db.Update(func(tx *bolt.Tx) error { cbtx := NewCoinbaseTX(address, genesisCoinbaseData) genesis := NewGenesisBlock(cbtx) b, err := tx.CreateBucket([]byte(blocksBucket)) if err != nil { log.Panic(err) } err = b.Put(genesis.Hash, genesis.Serialize()) if err != nil { log.Panic(err) } err = b.Put([]byte("l"), genesis.Hash) if err != nil { log.Panic(err) } tip = genesis.Hash return nil }) if err != nil { log.Panic(err) } bc := Blockchain{tip, db} return &bc }
代碼的主要變動是新增了三個關於交易的函數:
- FindUnspendTransactions遍歷公鏈,尋找交易信息中沒有被使用過輸出的交易,即未被花費過的餘額。當一條交易中的餘額被其他交易用做過輸入,該餘額也就不在具有餘額的屬性,不能再次被交易
- FindUTXO在內部調用了FindUnspendTransactions函數,與FindUnspendTransactions不同的是它用於查詢用戶的餘額信息,即所有有效未花費餘額的總和
- FindSpendableOutputs在內部調用了FindUnspendTransactions函數,用於找出哪些餘額是可用的
其次,原本的Addblock被改成了更具體的Mineblock挖礦函數,新增了Createblockchain函數和dbExists函數,用來判斷數據庫是否存在,只有當數據庫中沒有公鏈時才能創建新的區塊鏈。
proofofwork.go
在proofofwork文件中,僅在prepareData時將Data換成了HashTransactions,在挖礦時不再打印Data部分,proofofwork.go完整代碼如下:
package main import ( "bytes" "crypto/sha256" "fmt" "math" "math/big" ) var ( maxNonce = math.MaxInt64 ) const targetBits = 24 // ProofOfWork represents a proof-of-work type ProofOfWork struct { block *Block target *big.Int } // NewProofOfWork builds and returns a ProofOfWork func NewProofOfWork(b *Block) *ProofOfWork { target := big.NewInt(1) target.Lsh(target, uint(256-targetBits)) pow := &ProofOfWork{b, target} return pow } func (pow *ProofOfWork) prepareData(nonce int) []byte { data := bytes.Join( [][]byte{ pow.block.PrevBlockHash, pow.block.HashTransactions(), IntToHex(pow.block.Timestamp), IntToHex(int64(targetBits)), IntToHex(int64(nonce)), }, []byte{}, ) return data } // Run performs a proof-of-work func (pow *ProofOfWork) Run() (int, []byte) { var hashInt big.Int var hash [32]byte nonce := 0 fmt.Printf("Mining a new block") for nonce < maxNonce { data := pow.prepareData(nonce) hash = sha256.Sum256(data) // fmt.Printf("r%x", hash) hashInt.SetBytes(hash[:]) if hashInt.Cmp(pow.target) == -1 { break } else { nonce++ } } // fmt.Print("nn") return nonce, hash[:] } // Validate validates block's PoW func (pow *ProofOfWork) Validate() bool { var hashInt big.Int data := pow.prepareData(pow.block.Nonce) hash := sha256.Sum256(data) hashInt.SetBytes(hash[:]) isValid := hashInt.Cmp(pow.target) == -1 return isValid }
cli.go
cli.go文件隨底層的一些變動,做出相應的業務邏輯改變,變動主要用於實現命令行操作,不涉及區塊鏈的邏輯:
package main import ( "flag" "fmt" "log" "os" "strconv" ) // CLI responsible for processing command line arguments type CLI struct{} func (cli *CLI) createBlockchain(address string) { bc := CreateBlockchain(address) bc.db.Close() fmt.Println("Done!") } func (cli *CLI) getBalance(address string) { bc := NewBlockchain(address) defer bc.db.Close() balance := 0 UTXOs := bc.FindUTXO(address) for _, out := range UTXOs { balance += out.Value } fmt.Printf("Balance of '%s': %dn", address, balance) } func (cli *CLI) printUsage() { fmt.Println("Usage:") fmt.Println(" getbalance -address ADDRESS - Get balance of ADDRESS") fmt.Println(" createblockchain -address ADDRESS - Create a blockchain and send genesis block reward to ADDRESS") fmt.Println(" printchain - Print all the blocks of the blockchain") fmt.Println(" send -from FROM -to TO -amount AMOUNT - Send AMOUNT of coins from FROM address to TO") } func (cli *CLI) validateArgs() { if len(os.Args) < 2 { cli.printUsage() os.Exit(1) } } func (cli *CLI) printChain() { // TODO: Fix this bc := NewBlockchain("") defer bc.db.Close() bci := bc.Iterator() for { block := bci.Next() fmt.Printf("Prev. hash: %xn", block.PrevBlockHash) fmt.Printf("Hash: %xn", block.Hash) pow := NewProofOfWork(block) fmt.Printf("PoW: %sn", strconv.FormatBool(pow.Validate())) fmt.Println() if len(block.PrevBlockHash) == 0 { break } } } func (cli *CLI) send(from, to string, amount int) { bc := NewBlockchain(from) defer bc.db.Close() tx := NewUTXOTransaction(from, to, amount, bc) bc.MineBlock([]*Transaction{tx}) fmt.Println("Success!") } // Run parses command line arguments and processes commands func (cli *CLI) Run() { cli.validateArgs() getBalanceCmd := flag.NewFlagSet("getbalance", flag.ExitOnError) createBlockchainCmd := flag.NewFlagSet("createblockchain", flag.ExitOnError) sendCmd := flag.NewFlagSet("send", flag.ExitOnError) printChainCmd := flag.NewFlagSet("printchain", flag.ExitOnError) getBalanceAddress := getBalanceCmd.String("address", "", "The address to get balance for") createBlockchainAddress := createBlockchainCmd.String("address", "", "The address to send genesis block reward to") sendFrom := sendCmd.String("from", "", "Source wallet address") sendTo := sendCmd.String("to", "", "Destination wallet address") sendAmount := sendCmd.Int("amount", 0, "Amount to send") switch os.Args[1] { case "getbalance": err := getBalanceCmd.Parse(os.Args[2:]) if err != nil { log.Panic(err) } case "createblockchain": err := createBlockchainCmd.Parse(os.Args[2:]) if err != nil { log.Panic(err) } case "printchain": err := printChainCmd.Parse(os.Args[2:]) if err != nil { log.Panic(err) } case "send": err := sendCmd.Parse(os.Args[2:]) if err != nil { log.Panic(err) } default: cli.printUsage() os.Exit(1) } if getBalanceCmd.Parsed() { if *getBalanceAddress == "" { getBalanceCmd.Usage() os.Exit(1) } cli.getBalance(*getBalanceAddress) } if createBlockchainCmd.Parsed() { if *createBlockchainAddress == "" { createBlockchainCmd.Usage() os.Exit(1) } cli.createBlockchain(*createBlockchainAddress) } if printChainCmd.Parsed() { cli.printChain() } if sendCmd.Parsed() { if *sendFrom == "" || *sendTo == "" || *sendAmount <= 0 { sendCmd.Usage() os.Exit(1) } cli.send(*sendFrom, *sendTo, *sendAmount) } }
main.go
在main.go中,我們將所有的操作有交給cli對象進行,原本舊main.go中的新建創世塊操作,也放到了cli.go的邏輯中,所以只需要以下代碼:
package main func main() { bc := NewBlockchain() defer bc.db.Close() cli := CLI{bc} cli.Run() }
utils.go
沒有新的工具函數引入,utils.go文件不變。