Windows10+YOLOv3實現檢測自己的數據集(1)——製作自己的數據集

  • 2019 年 10 月 11 日
  • 筆記

本文將從以下三個方面介紹如何製作自己的數據集

一、數據標註

在深度學習的目標檢測任務中,首先要使用訓練集進行模型訓練。訓練的數據集好壞決定了任務的上限。下面介紹兩種常用的圖像目標檢測標註工具:LabelmeLabelImg。

(1)Labelme

Labelme適用於圖像分割任務和目標檢測任務的數據集製作,它來自該項目:https://github.com/wkentaro/labelme 。

按照項目中的教程安裝完畢後,應用界面如下圖所示

它能夠提供多邊形、矩形、圓形、直線和點的圖像標註,並將結果保存為 JSON 文件。

(2)LabelImg

LabelImg適用於目標檢測任務的數據集製作。它來自該項目:https://github.com/tzutalin/labelImg

應用界面如下圖所示:

它能夠提供矩形的圖像標註,並將結果保存為txt(YOLO)或xml(PascalVOC)格式。如果需要修改標籤的類別內容,則在主目錄data文件夾中的predefined_classes.txt文件中修改。

我使用的就是這一個標註軟件,標註結果保存為xml格式,後續還需要進行標註格式的轉換。

操作快捷鍵:

Ctrl + u  加載目錄中的所有圖像,鼠標點擊Open dir同功能
Ctrl + r  更改默認注釋目標目錄(xml文件保存的地址) 
Ctrl + s  保存
Ctrl + d  複製當前標籤和矩形框
space     將當前圖像標記為已驗證
w         創建一個矩形框
d         下一張圖片
a         上一張圖片
del       刪除選定的矩形框
Ctrl++    放大
Ctrl–    縮小
↑→↓←        鍵盤箭頭移動選定的矩形框

二、數據擴增

在某些場景下的目標檢測中,樣本數量較小,導致檢測的效果比較差,這時就需要進行數據擴增。本文介紹常用的6類數據擴增方式,包括裁剪、平移、改變亮度、加入噪聲、旋轉角度以及鏡像。

考慮到篇幅問題,將這一部分單列出來,詳細請參考本篇博客:https://www.cnblogs.com/lky-learning/p/11653861.html

三、將數據轉換至COCO的json格式

首先讓我們明確一下幾種格式,參考自【點此處】:

3.1 csv

  • csv/
    • labels.csv
    • images/
      • image1.jpg
      • image2.jpg
      • ...

labels.csv 的形式:

  • /path/to/image,xmin,ymin,xmax,ymax,label

例如:

  • /mfs/dataset/face/image1.jpg,450,154,754,341,face
  • /mfs/dataset/face/image2.jpg,143,154,344,341,face

3.2 voc

標準的voc數據格式如下:

VOC2007/

  • Annotations/
    • 0d4c5e4f-fc3c-4d5a-906c-105.xml
    • 0ddfc5aea-fcdac-421-92dad-144/xml
    • ...
  • ImageSets/
    • Main/
      • train.txt
      • test.txt
      • val.txt
      • trainval.txt
  • JPEGImages/
    • 0d4c5e4f-fc3c-4d5a-906c-105.jpg
    • 0ddfc5aea-fcdac-421-92dad-144.jpg
    • ...

3.3 COCO

coco/

  • annotations/
    • instances_train2017.json
    • instances_val2017.json
  • images/
    • train2017/
      • 0d4c5e4f-fc3c-4d5a-906c-105.jpg
      • ...
    • val2017
      • 0ddfc5aea-fcdac-421-92dad-144.jpg
      • ...

Json file 格式: (imageData那一塊太長了,不展示了)

{    "version": "3.6.16",    "flags": {},    "shapes": [      {        "label": "helmet",        "line_color": null,        "fill_color": null,        "points": [          [            131,            269          ],          [            388,            457          ]        ],        "shape_type": "rectangle"      }    ],    "lineColor": [      0,      255,      0,      128    ],    "fillColor": [      255,      0,      0,      128    ],    "imagePath": "004ffe6f-c3e2-3602-84a1-ecd5f437b113.jpg",    "imageData": ""   # too long ,so not show here    "imageHeight": 1080,    "imageWidth": 1920  }

在上一節中提到,經過標註後的結果保存為xml格式,我們首先要把這些xml標註文件整合成一個csv文件。

整合代碼如下:

import os  import glob  import pandas as pd  import xml.etree.ElementTree as ET    ## xml文件的路徑  os.chdir('./data/annotations/scratches')  path = 'C:/Users/Admin/Desktop/data/annotations/scratches' # 絕對路徑  img_path = 'C:/Users/Admin/Desktop/data/images'    def xml_to_csv(path):      xml_list = []      for xml_file in glob.glob(path + '/*.xml'):  #返回所有匹配的文件路徑列表。          tree = ET.parse(xml_file)          root = tree.getroot()            for member in root.findall('object'):  #            value = (root.find('filename').text,  #                     int(root.find('size')[0].text),  #                     int(root.find('size')[1].text),  #                     member[0].text,  #                     int(member[4][0].text),  #                     int(member[4][1].text),  #                     int(member[4][2].text),  #                     int(member[4][3].text)  #                     )              value = (img_path +'/' + root.find('filename').text,                       int(member[4][0].text),                       int(member[4][1].text),                       int(member[4][2].text),                       int(member[4][3].text),                       member[0].text                       )              xml_list.append(value)      #column_name = ['filename', 'width', 'height', 'class', 'xmin', 'ymin', 'xmax', 'ymax']      column_name = ['filename', 'xmin', 'ymin', 'xmax', 'ymax', 'class']      xml_df = pd.DataFrame(xml_list, columns=column_name)      return xml_df    if __name__ == '__main__':      image_path = path      xml_df = xml_to_csv(image_path)      ## 修改文件名稱      xml_df.to_csv('scratches.csv', index=None)      print('Successfully converted xml to csv.')

當顯示 Successfully converted xml to csv 後,我們就得到了整理後的標記文件。

在有些模型下,有了圖像數據和csv格式的標註文件後,就可以進行訓練了。但是在YOLOv3中,標記文件的類型為COCO的json格式,因此我們還得將其轉換至json格式。

轉換代碼:

import os  import json  import numpy as np  import pandas as pd  import glob  import cv2  import shutil  from IPython import embed  from sklearn.model_selection import train_test_split  np.random.seed(41)    # 0為背景  classname_to_id = {"scratches": 1,"inclusion": 2}    class Csv2CoCo:        def __init__(self,image_dir,total_annos):          self.images = []          self.annotations = []          self.categories = []          self.img_id = 0          self.ann_id = 0          self.image_dir = image_dir          self.total_annos = total_annos        def save_coco_json(self, instance, save_path):          json.dump(instance, open(save_path, 'w'), ensure_ascii=False, indent=2)  # indent=2 更加美觀顯示        # 由txt文件構建COCO      def to_coco(self, keys):          self._init_categories()          for key in keys:              self.images.append(self._image(key))              shapes = self.total_annos[key]              for shape in shapes:                  bboxi = []                  for cor in shape[:-1]:                      bboxi.append(int(cor))                  label = shape[-1]                  annotation = self._annotation(bboxi,label)                  self.annotations.append(annotation)                  self.ann_id += 1              self.img_id += 1          instance = {}          instance['info'] = 'spytensor created'          instance['license'] = ['license']          instance['images'] = self.images          instance['annotations'] = self.annotations          instance['categories'] = self.categories          return instance        # 構建類別      def _init_categories(self):          for k, v in classname_to_id.items():              category = {}              category['id'] = v              category['name'] = k              self.categories.append(category)        # 構建COCO的image字段      def _image(self, path):          image = {}          img = cv2.imread(self.image_dir + path)          image['height'] = img.shape[0]          image['width'] = img.shape[1]          image['id'] = self.img_id          image['file_name'] = path          return image        # 構建COCO的annotation字段      def _annotation(self, shape,label):          # label = shape[-1]          points = shape[:4]          annotation = {}          annotation['id'] = self.ann_id          annotation['image_id'] = self.img_id          annotation['category_id'] = int(classname_to_id[label])          annotation['segmentation'] = self._get_seg(points)          annotation['bbox'] = self._get_box(points)          annotation['iscrowd'] = 0          annotation['area'] = 1.0          return annotation        # COCO的格式: [x1,y1,w,h] 對應COCO的bbox格式      def _get_box(self, points):          min_x = points[0]          min_y = points[1]          max_x = points[2]          max_y = points[3]          return [min_x, min_y, max_x - min_x, max_y - min_y]      # segmentation      def _get_seg(self, points):          min_x = points[0]          min_y = points[1]          max_x = points[2]          max_y = points[3]          h = max_y - min_y          w = max_x - min_x          a = []          a.append([min_x,min_y, min_x,min_y+0.5*h, min_x,max_y, min_x+0.5*w,max_y, max_x,max_y, max_x,max_y-0.5*h, max_x,min_y, max_x-0.5*w,min_y])          return a      if __name__ == '__main__':        ## 修改目錄      csv_file = "data/annotations/scratches/scratches.csv"      image_dir = "data/images/"      saved_coco_path = "./"      # 整合csv格式標註文件      total_csv_annotations = {}      annotations = pd.read_csv(csv_file,header=None).values      for annotation in annotations:          key = annotation[0].split(os.sep)[-1]          value = np.array([annotation[1:]])          if key in total_csv_annotations.keys():              total_csv_annotations[key] = np.concatenate((total_csv_annotations[key],value),axis=0)          else:              total_csv_annotations[key] = value      # 按照鍵值劃分數據      total_keys = list(total_csv_annotations.keys())      train_keys, val_keys = train_test_split(total_keys, test_size=0.2)      print("train_n:", len(train_keys), 'val_n:', len(val_keys))      ## 創建必須的文件夾      if not os.path.exists('%ssteel/annotations/'%saved_coco_path):          os.makedirs('%ssteel/annotations/'%saved_coco_path)      if not os.path.exists('%ssteel/images/train/'%saved_coco_path):          os.makedirs('%ssteel/images/train/'%saved_coco_path)      if not os.path.exists('%ssteel/images/val/'%saved_coco_path):          os.makedirs('%ssteel/images/val/'%saved_coco_path)      ## 把訓練集轉化為COCO的json格式      l2c_train = Csv2CoCo(image_dir=image_dir,total_annos=total_csv_annotations)      train_instance = l2c_train.to_coco(train_keys)      l2c_train.save_coco_json(train_instance, '%ssteel/annotations/instances_train.json'%saved_coco_path)      for file in train_keys:          shutil.copy(image_dir+file,"%ssteel/images/train/"%saved_coco_path)      for file in val_keys:          shutil.copy(image_dir+file,"%ssteel/images/val/"%saved_coco_path)      ## 把驗證集轉化為COCO的json格式      l2c_val = Csv2CoCo(image_dir=image_dir,total_annos=total_csv_annotations)      val_instance = l2c_val.to_coco(val_keys)      l2c_val.save_coco_json(val_instance, '%ssteel/annotations/instances_val.json'%saved_coco_path)

至此,我們的數據預處理工作就做好了

四、參考資料

  • https://blog.csdn.net/sty945/article/details/79387054
  • https://blog.csdn.net/saltriver/article/details/79680189
  • https://www.ctolib.com/topics-44419.html
  • https://www.zhihu.com/question/20666664
  • https://github.com/spytensor/prepare_detection_dataset#22-voc
  • https://blog.csdn.net/chaipp0607/article/details/79036312