哪種 Python 程序員最賺錢?

  • 2019 年 10 月 8 日
  • 筆記

本文是春節經典文章回顧專題第一彈。轉載自簡說Python,作者XksA,詳情可以掃描下方二維碼關注該公眾號

本文以Python爬蟲、數據分析、後端、數據挖掘、全棧開發、運維開發、高級開發工程師、大數據、機器學習、架構師這10個崗位,從拉勾網上爬取了相應的職位信息和任職要求,並通過數據分析可視化,直觀地展示了這10個職位的平均薪資和學歷、工作經驗要求。

這是之前寫的兩篇文章的整合版(Python職位分析上Python職位分析下),由csdn排版,這幾天這個文章又活起來了(不過的確是挺好的,當時寫花了好幾天時間),所以特地發一遍,讓新讀者也看看,文章很長,耐心觀看。

爬蟲準備

1、先獲取薪資和學歷、工作經驗要求

由於拉勾網數據加載是動態加載的,需要我們分析。分析方法如下:

F12分析頁面數據存儲位置

我們發現網頁內容是通過post請求得到的,返回數據是json格式,那我們直接拿到json數據即可。

我們只需要薪資和學歷、工作經驗還有單個招聘信息,返回json數據字典中對應的英文為:positionId,salary, education, workYear(positionId為單個招聘信息詳情頁面編號)。相關操作代碼如下:

  • 文件存儲:
def file_do(list_info):      # 獲取文件大小      file_size = os.path.getsize(r'G:lagou_anv.csv')      if file_size == 0:          # 表頭          name = ['ID','薪資', '學歷要求', '工作經驗']          # 建立DataFrame對象          file_test = pd.DataFrame(columns=name, data=list_info)          # 數據寫入          file_test.to_csv(r'G:lagou_anv.csv', encoding='gbk', index=False)      else:          with open(r'G:lagou_anv.csv', 'a+', newline='') as file_test:              # 追加到文件後面              writer = csv.writer(file_test)              # 寫入文件              writer.writerows(list_info)  
  • 基本數據獲取:
# 1. post 請求 url  req_url = 'https://www.lagou.com/jobs/positionAjax.json?needAddtionalResult=false'  # 2.請求頭 headers  headers = {      'Accept': 'application/json,text/javascript,*/*;q=0.01',      'Connection': 'keep-alive',      'Cookie': '你的Cookie值,必須加上去',      'Host': 'www.lagou.com',      'Referer': 'https://www.lagou.com/jobs/list_Python?labelWords=&fromSearch=true&suginput=',      'User-Agent':  str(UserAgent().random),  }    def get_info(headers):      # 3.for 循環請求(一共30頁)      for i in range(1, 31):          # 翻頁          data = {              'first': 'true',              'kd': 'Python爬蟲',              'pn': i          }          # 3.1 requests 發送請求          req_result = requests.post(req_url, data=data, headers=headers)          req_result.encoding = 'utf-8'          print("第%d頁:"%i+str(req_result.status_code))          # 3.2 獲取數據          req_info = req_result.json()          # 定位到我們所需數據位置          req_info = req_info['content']['positionResult']['result']          print(len(req_info))          list_info = []          # 3.3 取出具體數據          for j in range(0, len(req_info)):              salary = req_info[j]['salary']              education = req_info[j]['education']              workYear = req_info[j]['workYear']              positionId = req_info[j]['positionId']              list_one = [positionId,salary, education, workYear]              list_info.append(list_one)          print(list_info)          # 存儲文件          file_do(list_info)          time.sleep(1.5)  
  • 運行結果:

2、根據獲取到的`positionId`來訪問招聘信息詳細頁面

  • 根據`positionId`還原訪問鏈接:
position_url = []  def read_csv():      # 讀取文件內容      with open(r'G:lagou_anv.csv', 'r', newline='') as file_test:          # 讀文件          reader = csv.reader(file_test)          i = 0          for row in reader:              if i != 0 :                  # 根據positionID補全鏈接                  url_single = "https://www.lagou.com/jobs/%s.html"%row[0]                  position_url.append(url_single)              i = i + 1          print('一共有:'+str(i-1)+'個')          print(position_url)
  • 訪問招聘信息詳情頁面,獲取職位描述(崗位職責和崗位要求)並清理數據:
def get_info():      for position_url in position_urls:          work_duty = ''          work_requirement = ''          response00 = get_response(position_url,headers = headers)          time.sleep(1)          content = response00.xpath('//*[@id="job_detail"]/dd[2]/div/p/text()')          # 數據清理          j = 0          for i in range(len(content)):              content[i] = content[i].replace('xa0',' ')              if content[i][0].isdigit():                  if j == 0:                      content[i] = content[i][2:].replace('、',' ')                      content[i] = re.sub('[;;.0-9。]','', content[i])                      work_duty = work_duty+content[i]+ '/'                      j = j + 1                  elif content[i][0] == '1' and not content[i][1].isdigit():                      break                  else:                      content[i] = content[i][2:].replace('、', ' ')                      content[i] = re.sub('[、;;.0-9。]','',content[i])                      work_duty = work_duty + content[i]+ '/'          m = i          # 崗位職責          write_file(work_duty)          print(work_duty)          # 數據清理          j = 0          for i in range(m,len(content)):              content[i] = content[i].replace('xa0',' ')              if content[i][0].isdigit():                  if j == 0:                      content[i] = content[i][2:].replace('、', ' ')                      content[i] = re.sub('[、;;.0-9。]', '', content[i])                      work_requirement = work_requirement + content[i] + '/'                      j = j + 1                  elif content[i][0] == '1' and not content[i][1].isdigit():                      # 控制範圍                      break                  else:                      content[i] = content[i][2:].replace('、', ' ')                      content[i] = re.sub('[、;;.0-9。]', '', content[i])                      work_requirement = work_requirement + content[i] + '/'          # 崗位要求          write_file2(work_requirement)          print(work_requirement)          print("-----------------------------")  
  • 運行結果:

duty

require

3、四種圖可視化數據+數據清理方式

  • 矩形樹圖:
# 1.矩形樹圖可視化學歷要求  from pyecharts import TreeMap  education_table = {}  for x in education:      education_table[x] = education.count(x)  key = []  values = []  for k,v in education_table.items():      key.append(k)      values.append(v)    data = []  for i in range(len(key)) :      dict_01 = {"value": 40, "name": "我是A"}      dict_01["value"] = values[i]      dict_01["name"] = key[i]      data.append(dict_01)  tree_map = TreeMap("矩形樹圖", width=1200, height=600)  tree_map.add("學歷要求",data, is_label_show=True, label_pos='inside')  
  • 玫瑰餅圖:
# 2.玫瑰餅圖可視化薪資  import re  import math  '''  # 薪水分類  parameter : str_01--字符串原格式:20k-30k  returned value : (a0+b0)/2 --- 解析後變成數字求中間值:25.0  '''  def assort_salary(str_01):      reg_str01 = "(d+)"      res_01 = re.findall(reg_str01, str_01)      if len(res_01) == 2:          a0 = int(res_01[0])          b0 = int(res_01[1])      else :          a0 = int(res_01[0])          b0 = int(res_01[0])      return (a0+b0)/2    from pyecharts import Pie  salary_table = {}  for x in salary:      salary_table[x] = salary.count(x)    key = ['5k以下','5k-10k','10k-20k','20k-30k','30k-40k','40k以上']  a0,b0,c0,d0,e0,f0=[0,0,0,0,0,0]    for k,v in salary_table.items():      ave_salary = math.ceil(assort_salary(k))      print(ave_salary)      if ave_salary < 5:          a0 = a0 + v      elif ave_salary in range(5,10):          b0 = b0 +v      elif ave_salary in range(10,20):          c0 = c0 +v      elif ave_salary in range(20,30):          d0 = d0 +v      elif ave_salary in range(30,40):          e0 = e0 +v      else :          f0 = f0 + v  values = [a0,b0,c0,d0,e0,f0]    pie = Pie("薪資玫瑰圖", title_pos='center', width=900)  pie.add("salary",key,values,center=[40, 50],is_random=True,radius=[30, 75],rosetype="area",is_legend_show=False,is_label_show=True)  
  • 普通柱狀圖:
# 3.工作經驗要求柱狀圖可視化  from pyecharts import Bar  workYear_table = {}  for x in workYear:      workYear_table[x] = workYear.count(x)  key = []  values = []  for k,v in workYear_table.items():      key.append(k)      values.append(v)  bar = Bar("柱狀圖")  bar.add("workYear", key, values, is_stack=True,center= (40,60))  
  • 詞雲圖:
import jieba  from pyecharts import WordCloud  import pandas as pd  import re,numpy    stopwords_path = 'H:PyCodingLagou_analysisstopwords.txt'  def read_txt():      with open("G:lagouContent\ywkf_requirement.txt",encoding='gbk') as file:          text = file.read()          content = text          # 去除所有評論里多餘的字符          content = re.sub('[,,。. rn]', '', content)          segment = jieba.lcut(content)          words_df = pd.DataFrame({'segment': segment})          # quoting=3 表示stopwords.txt里的內容全部不引用          stopwords = pd.read_csv(stopwords_path, index_col=False,quoting=3, sep="t", names=['stopword'], encoding='utf-8')          words_df = words_df[~words_df.segment.isin(stopwords.stopword)]          words_stat = words_df.groupby(by=['segment'])['segment'].agg({"計數": numpy.size})          words_stat = words_stat.reset_index().sort_values(by=["計數"], ascending=False)          test = words_stat.head(200).values          codes = [test[i][0] for i in range(0, len(test))]          counts = [test[i][1] for i in range(0, len(test))]          wordcloud = WordCloud(width=1300, height=620)          wordcloud.add("必須技能", codes, counts, word_size_range=[20, 100])          wordcloud.render("H:PyCodingLagou_analysiscloud_pitywkf_bxjn.html")

Python爬蟲崗位

學歷要求

工作月薪

工作經驗要求

爬蟲技能

關鍵詞解析:

  • 學歷:本科
  • 工作月薪:10k-30k
  • 工作經驗:1-5年
  • 技能:分佈式、多線程、框架、Scrapy、算法、數據結構、數據庫

綜合:爬蟲這個崗位在學歷要求上比較放鬆,大多數為本科即可,比較適合想轉業的老哥小姐姐,學起來也不會特別難。而且薪資待遇上也還算比較優厚,基本在10k以上。不過唯一對工作經驗要求還是比較高的,有近一半的企業要求工作經驗要達到3年以上。

Python數據分析崗位

學歷要求

工作月薪

工作經驗要求

數據分析技能

關鍵詞解析:

  • 學歷:本科(碩士比例有所增高)
  • 工作月薪:10k-30k
  • 工作經驗:1-5年
  • 技能:SAS、SPSS、Hadoop、Hive、數據庫、Excel、統計學、算法

綜合:數據分析這個崗位在學歷要求上比爬蟲要求稍微高一些,碩士比例有所提升,專業知識上有一定要求。薪資待遇上也還算比較優厚,基本在10k以上,同時薪資在30k-40k的比例也有所上升。對工作經驗要求還是比較高,大部分的企業要求工作經驗要達到3年以上。

Python後端崗位

學歷要求

工作月薪

工作經驗要求

後端技能

學歷要求

工作月薪

工作經驗要求

後端技能

關鍵詞解析:

  • 學歷:本科
  • 工作月薪:10k-30k
  • 工作經驗:3-5年
  • 技能:Flask、Django、Tornado、Linux、MySql、Redis、MongoDB、TCP/IP、數學(哈哈)

綜合:web後端這個崗位對學歷要求不高,但專業知識上有很大要求,得會Linux操作系統基本操作、三大主流數據庫的使用、以及三大基本web框架的使用等計算機相關知識,總體來說難道還是比較大。薪資待遇上也比較優厚,基本在10k以上,同時薪資在30k-40k的比例也有近20%。對工作經驗要求還是比較高,大部分的企業要求工作經驗要達到3年以上。

Python數據挖掘崗位

學歷要求

工作月薪

工作經驗要求

數據挖掘技能

關鍵詞解析:

  • 學歷:本科(碩士)
  • 工作月薪:20k-40k
  • 工作經驗:3-5年
  • 技能:學歷(hhh)、Hadoop、Spark、MapReduce、Scala、Hive、聚類、決策樹、GBDT、算法

綜合:數據挖掘這個崗位,在學歷要求是最高的,雖然還是本科居多,但碩士比例明顯增加,還有公司要求博士學歷。在專業知識上也有很大要求,得會Linux操作系統基本操作、大數據框架Hadoop、Spark以及數據倉庫Hive的使用等計算機相關知識,總體來說難道還是比較大。薪資待遇上特別優厚,基本在20k以上,薪資在30k-40k的比例也有近40%,對工作經驗要求還是比較高,大部分的企業要求工作經驗要達到3年以上。

Python全棧開發崗位

學歷要求

工作月薪

工作經驗要求

全棧開發技能

關鍵詞解析:

  • 學歷:本科
  • 工作月薪:10k-30k
  • 工作經驗:3-5年
  • 技能:測試、運維、管理、開發、數據結構、算法、接口、虛擬化、前端

綜合:全棧開發這個崗位什麼都要懂些,什麼都要學些,在學歷要求上並不太高,本科學歷即可,在專業知識上就不用說了,各個方面都得懂,還得理解運用。薪資待遇上也還可以,基本在10k以上,薪資在30k-40k的比例也有近20%。對工作經驗要求還是比較高,大部分的企業要求工作經驗要達到3年以上。總體來說,就我個人而言會覺得全棧是個吃力多薪水少的崗位。

Python運維開發崗位

學歷要求

工作月薪

工作經驗要求

運維開發技能

關鍵詞解析:

  • 學歷:本科
  • 工作月薪:10k-30k
  • 工作經驗:3-5年
  • 技能:SVN、Git、Linux、框架、shell編程、mysql,redis,ansible、前端框架

綜合:運維開發這個崗位在學歷要求上不高,除開佔一大半的本科,就是專科了。工作經驗上還是有一些要求,大多數要求有3-5年工作經驗。從工資上看的話,不高也不低,20k以上也佔有62%左右。要學習的東西也比較多,前端、後端、數據庫、操作系統等等。

Python高級開發工程師崗位

學歷要求

工作月薪

工作經驗要求

高級開發工程師技能

關鍵詞解析:

  • 學歷:本科
  • 工作月薪:20k左右
  • 工作經驗:3-5年
  • 技能:WEB後端、MySQL、MongoDB、Redis、Linux系統(CentOS)、CI/CD 工具、GitHub

綜合:高級開發工程師這個崗位在學歷要求上與運維開發差不多,薪資也相差不大,22%以上的企業開出了30k以上的薪資,65%左右企業給出20k以上的薪資。當然,對工作經驗上還是要求較高,有近一半的企業要求工作經驗要達到3年以上。

Python大數據崗位

學歷要求

工作月薪

工作經驗要求

大數據技能

關鍵詞解析:

  • 學歷:本科(碩士也佔比很大)
  • 工作月薪:30k以上
  • 工作經驗:3-5年
  • 技能:前端開發、 MySQL、Mongo、Redis、Git 、Flask、Celery、Hadoop/HBase/Spark/Hive、Nginx

綜合:現在是大數據時代,大數據這個崗位也是相當火熱,在學歷要求上幾乎與運維開發一模一樣。當然,可能數據上出現了巧合,本科居多,工作經驗上1-5年佔據一大半,薪資上也基本上在20k以上,該崗位薪資在20k以上的企業佔了55%左右。

Python機器學習崗位

學歷要求

工作月薪

工作經驗要求

機器學習技能

關鍵詞解析:

  • 學歷:本科(碩士也佔比很大)
  • 工作月薪:30k以上
  • 工作經驗:3-5年
  • 技能:Machine Learning,Data Mining,Algorithm 研發,算法,Linux,決策樹,TF,Spark+MLlib,Cafe

綜合:機器學習這個崗位在學歷要求上比較嚴格,雖然看起來是本科居多,但對於剛畢業或畢業不久的同學,如果只是個本科,應聘還是很有難度的。當然機器學習崗位薪資特高,60%在30k以上,近90%在20k以上,97%在10k以上。除開對學歷要求比較高外,對工作經驗要求也比較高,有近一半的企業要求工作經驗要達到3年以上。

Python架構師崗位

學歷要求

工作月薪

工作經驗要求

架構師技能

關鍵詞解析:

  • 學歷:本科
  • 工作月薪:30k以上
  • 工作經驗:5-10年
  • 技能:Flask,Django,MySQL,Redis,MongoDB,Hadoop,Hive,Spark,ElasticSearch,Pandas,Spark/MR,Kafka/rabitmq

綜合:架構師這個崗位單從學歷上看不出什麼來,但在薪資上幾乎與機器學習一樣,甚至比機器學習還要高,機器學習中月薪40k以上的佔23.56%,架構師中月薪40k以上的佔30.67%。在學歷要求上比機器學習要略低,本科居多,但在工作經驗上一半以上的企業要求工作經驗在5-10年。在必要技能上也要求特別嚴格,比之前說過的全棧開發師有過之而無不及。

看着這月薪,我是超級想去了,你呢?

寫在最後

從上文可以看出,Python相關的各個崗位薪資還是不錯的,基本上所有崗位在10k以上的佔90%,20k以上的也基本都能佔60%左右。而且學歷上普遍來看,本科學歷佔70%以上。唯一的是需要工作經驗,一般得有個3-5年工作經驗,也就是如果24歲本科畢業,27歲就有很大機會拿到月薪20k以上。有沒有很心動?

整個系列下來,詞雲分析雖不完全正確,但大家不難發現,有兩個詞在每個崗位要求的詞雲圖中都有出現,那就是——經驗和熟悉。的確,不論我們做什麼,都必須認認真真的去做、去學,在不斷的實踐中積累經驗。

到這裡,本系列就結束了,本系列一共爬取了拉鉤網10個不同Python相關崗位,每個崗位450條招聘信息,共計4500條。爬取拉鉤網其實是個挺簡單的事情,只要知道了怎麼去分析頁面加載即可,獲取到數據也不過就是直接返回的json數據,或者正則匹配。我覺得比較有趣也是比較難的是數據清理和可視化分析。後面我會繼續學習,也希望大家一起學習,多多交流。