經典!工業界深度推薦系統與CTR預估必讀的論文匯總
- 2019 年 10 月 7 日
- 筆記
導讀:本文是「深度推薦系統」專欄的第十一篇文章,這個系列將介紹在深度學習的強力驅動下,給推薦系統工業界所帶來的最前沿的變化。本文主要根據Google推出的引領推薦系統與CTR預估工業界潮流至今的一大神作W&D[1],所總結出來的深度推薦系統與CTR預估工業界必讀的論文匯總。 歡迎轉載,轉載請註明出處以及鏈接,更多關於深度推薦系統優質內容請關注如下頻道。 知乎專欄:深度推薦系統 微博:深度傳送門 公眾號:深度傳送門
起初是因為在唐傑老師的微博上看到其學生整理的一個關於Bert論文高引用相關的圖片(https://weibo.com/2126427211/I4cXHxIy4)。
一個偉大的學生做的一個BERT的論文以及它引用的文章之間的關係,相當於是一個針對論文Citation的Finding->Reasoning->Exploring的過程。感覺做得很酷,忍不住share出來了。。。他偉大的決定要寫個算法自動搞定!
覺得這個整理思路不錯,於是也照葫蘆畫瓢整理了一下推薦系統和CTR預估上工業界同樣鼎鼎大名Google出品的W&D[1]論文相關高引用的論文匯總。其實主要是對近年來推薦系統和CTR預估工業界影響力較大的論文做一個簡單的思路梳理,首先上圖如下,圓圈內數字為論文被引用數量。

Collaborative Filtering
- [WWW 17] Neural Collaborative Filtering
- [SIGIR 18] Collaborative Memory Network for Recommendation Systems
Deep部分演進
- [SIGIR 17] Neural Factorization Machines for Sparse Predictive Analytics
- [IJCAI 17] Attentional Factorization Machines: Learning the Weight of Feature Interactions via Attention Networks
- [ECIR 16] Factorization-supported Neural Network
- [TOIS 18] Product-Based Neural Networks for User Response Prediction over Multi-Field Categorical Data
- [RecSys 19] FiBiNET: Combining Feature Importance and Bilinear feature Interaction for Click-Through Rate Prediction
- [KDD 18] Deep Interest Network for Click-through Rate Prediction
- [AAAI 19] Deep Interest Evolution Network for Click-Through Rate Prediction
- [IJCAI 19] Deep Session Interest Network for Click-Through Rate Prediction
- [CIKM 19] AutoInt: Automatic Feature Interaction Learning via Self-Attentive Neural Networks
Wide部分演進
- [IJCAI 17] DeepFM: A Factorization-Machine based Neural Network for CTR Prediction
- [KDD 17] Deep & Cross Network for Ad Click Predictions
- [KDD 18] xDeepFM: Combining Explicit and Implicit Feature Interactions
- for Recommender Systems
- [WWW 19] Feature Generation by Convolutional Neural Network for Click-Through Rate Prediction
強化學習
- [WWW 17] DRN: A Deep Reinforcement Learning Framework for News Recommendation
- [WSDM 19] Top-K Off-Policy Correction for a REINFORCE Recommender System
- [IJCAI 19] Reinforcement Learning for Slate-based Recommender Systems: A Tractable Decomposition and Practical Methodology
知識圖譜
- [WWW 17] DKN: Deep Knowledge-Aware Network for News Recommendation
- [CIKM 18] RippleNet: Propagating User Preferences on the Knowledge Graph for Recommender Systems
Embedding技術
- [ICCCA 18] Item2Vec-Neural Item Embedding for Collaborative Filtering
- [RecSys 16] Meta-Prod2Vec: Product Embeddings Using Side-Information for Recommendation
- [KDD 18] Real-time Personalization using Embeddings for Search Ranking at Airbnb
- [KDD 18] Billion-scale Commodity Embedding for E-commerce Recommendation in Alibaba
- [WWW 19] NetSMF: Large-Scale Network Embedding as Sparse Matrix Factorization
- [IJCAI 19] ProNE: Fast and Scalable Network Representation Learning
參考文獻
[1] Wide & Deep Learning for Recommender Systems, DLRS 2016