德克萨斯大学提出:One-stage目标检测最强算法 ExtremeNet

  • 2019 年 12 月 31 日
  • 笔记

前戏

最近出了很多论文,各种SOTA。比如(点击可访问):

今天头条推送的是目前人脸检测方向的SOTA论文:改进SRN人脸检测算法本文要介绍的是目前(2019-01-26) one-stage目标检测中最强算法:ExtremeNet。

正文

《Bottom-up Object Detection by Grouping Extreme and Center Points》

arXiv: https://arxiv.org/abs/1901.08043

github: https://github.com/xingyizhou/ExtremeNet

作者团队:UT Austin

注:2019年01月23日刚出炉的paper

Abstract:With the advent of deep learning, object detection drifted from a bottom-up to a top-down recognition problem. State of the art algorithms enumerate a near-exhaustive list of object locations and classify each into: object or not. In this paper, we show that bottom-up approaches still perform competitively. We detect four extreme points (top-most, left-most, bottom-most, right-most) and one center point of objects using a standard keypoint estimation network. We group the five keypoints into a bounding box if they are geometrically aligned. Object detection is then a purely appearance-based keypoint estimation problem, without region classification or implicit feature learning. The proposed method performs on-par with the state-of-the-art region based detection methods, with a bounding box AP of 43.2% on COCO test-dev. In addition, our estimated extreme points directly span a coarse octagonal mask, with a COCO Mask AP of 18.9%, much better than the Mask AP of vanilla bounding boxes. Extreme point guided segmentation further improves this to 34.6% Mask AP.

Illustration of our object detection method

Illustration of our framework

Illustration of our object detection method

基础工作

  • Extreme and center points
  • Keypoint detection
  • CornerNet
  • Deep Extreme Cut

创新点

  • Center Grouping
  • Ghost box suppression
  • Edge aggregation
  • Extreme Instance Segmentation

实验结果

ExtremeNet有多强,看下面的图示就知道了,在COCO test-dev数据集上,mAP为43.2,在one-stage detector中,排名第一。可惜的是没有给出时间上的对比,论文中只介绍说测试一幅图像,耗时322ms(3.1 FPS)。

State-of-the-art comparison on COCO test-dev