【Mark一下】46个常用 Pandas 方法速查表
- 2019 年 12 月 16 日
- 笔记
导读:Pandas是日常数据分析师使用最多的分析和处理库之一,其中提供了大量方便实用的数据结构和方法。但在使用初期,很多人会不知道:
1.它能提供哪些功能?
2.我的需求应该用哪个方法?
3.具体某个方法怎么调用?
本篇文章总结了常用的46个Pandas数据工作方法,包括创建数据对象、查看数据信息、数据切片和切块、数据筛选和过滤、数据预处理操作、数据合并和匹配、数据分类汇总以及map、apply和agg高级函数的使用方法。
你可以粗略浏览本文,了解Pandas的常用功能;也可以保存下来,作为以后数据处理工作时的速查手册,没准哪天就会用上呢~
1创建数据对象
Pandas最常用的数据对象是数据框(DataFrame)和Series。数据框与R中的DataFrame格式类似,都是一个二维数组。Series则是一个一维数组,类似于列表。数据框是Pandas中最常用的数据组织方式和对象。有关更多数据文件的读取将在第三章介绍,本节介绍从对象和文件创建数据框的方式,具体如表1所示:
表1 Pandas创建数据对象
方法 |
用途 |
示例 |
示例说明 |
---|---|---|---|
read_tableread_csvread_excel |
从文件创建数据框 |
In: import pandas as pd In: data1 = pd.read_table('table_data.txt',sep=';') |
读取table_data.txt文件,数据分隔符是; |
DataFrame.from_dictDataFrame.from_itemsDataFrame.from_records |
从其他对象例如Series、Numpy数组、字典创建数据框 |
In: data_dict = {'col1': [2, 1, 0], 'col2': ['a', 'b', 'a'], 'col3': [True, True, False]}In: data2 = pd.DataFrame.from_dict(data_dict) |
基于字典创建数据框,列名为字典的3个key,每一列的值为key对应的value值 |
2 查看数据信息
查看信息常用方法包括对总体概况、描述性统计信息、数据类型和数据样本的查看,具体如表2所示:
表2 Pandas常用查看数据信息方法汇总
方法 |
用途 |
示例 |
示例说明 |
---|---|---|---|
info |
查看数据框的索引和列的类型、费控设置和内存用量信息。 |
In: print(data2.info())Out: <class 'pandas.core.frame.DataFrame'>RangeIndex: 3 entries, 0 to 2Data columns (total 3 columns):col1 3 non-null int64col2 3 non-null objectcol3 3 non-null booldtypes: bool(1), int64(1), object(1)memory usage: 131.0+ bytesNone |
返回对象的所有信息 |
describe |
显示描述性统计数据,包括集中趋势、分散趋势、形状等。 |
In: print(data2.describe())Out: col1count 3.0mean 1.0std 1.0min 0.025% 0.550% 1.075% 1.5max 2.0 |
默认查看数值型列,使用include= 'all'查看所有类型数据 |
dtype |
查看数据框每一列的数据类型 |
In: print(data2.dtypes)Out: col1 int64col2 objectcol3 booldtype: objectt |
结果是Series类型 |
head |
查看前N条结果 |
In: print(data2.head(2))Out: col1 col2 col30 2 a True1 1 b True |
从第一行开始取前2行 |
tail |
查看后N条结果 |
In: print(data2.tail(2))Out: col1 col2 col31 1 b True2 0 a False |
从最后一行开始取后2行 |
index |
查看索引 |
In: print(data2.index)Out: RangeIndex(start=0, stop=3, step=1) |
结果是一个类列表的对象,可用列表方法操作对象 |
columns |
查看列名 |
In: print(data2.columns)Out: Index(['col1', 'col2', 'col3'], dtype='object') |
|
shape |
查看形状,记录有多少行多少列 |
In: print(data2.shape)Out: (3,3) |
形状为元组类型 |
isnull |
查看每个值是否为空值 |
In: print(data2.isnull())Out: col1 col2 col30 False False False1 False False False2 False False False |
数据中没有空值,因此都是False |
unique |
查看特定列的唯一值 |
In: print(data2['col2'].unique())Out: ['a' 'b'] |
查看col2列的唯一值 |
注意 在上述查看方法中,除了info方法外,其他方法返回的对象都可以直接赋值给变量,然后基于变量对象做二次处理。例如可以从dtype的返回值中仅获取类型为bool的列。
3 数据切片和切块
数据切片和切块是使用不同的列或索引切分数据,实现从数据中获取特定子集的方式。常见的数据切片和切换的方式如表3所示:
表3 Pandas常用数据切分方法
方法 |
用途 |
示例 |
示例说明 |
---|---|---|---|
[['列名1', '列名2',…]] |
按列名选择单列或多列 |
In: print(data2[['col1','col2']])Out: col1 col20 2 a1 1 b2 0 a |
选择data2的col1和col3两列 |
[m:n] |
选择行索引在m到n间的记录 |
In: print(data2[0:2])Out: col1 col2 col30 2 a True1 1 b True |
选取行索引在[0:2)中间的记录,不包含2 |
iloc[m:n] |
In: print(data2.iloc[0:2])Out: col1 col2 col30 2 a True1 1 b True |
||
iloc[m:n,j:k] |
选择行索引在m到n且列索引在j到k间的记录 |
In: print(data2.iloc[0:2,0:1])Out: col10 21 1 |
选取行索引在[0:2)列索引在[0:1)中间的记录,行索引不包含2,列索引不包含1 |
loc[m:n,[ '列名1', '列名2',…]] |
选择行索引在m到n间且列名为列名1、列名2的记录 |
In: print(data2.loc[0:2,['col1','col2']])Out: col1 col20 2 a1 1 b2 0 a |
选取行索引在[0:2)之间,列名为'col1'和'col2'的记录,行索引不包含2 |
提示 如果选择特定索引的数据,直接写索引值即可。例如data2.loc[2,['col1','col2']]为选择第三行且列名为'col1'和'col2'的记录。
4 数据筛选和过滤
数据筛选和过滤是基于条件的数据选择,本章2.6.3提到的比较运算符都能用于数据的筛选和选择条件,不同的条件间的逻辑不能直接用and、or来实现且、或的逻辑,而是要用&和|实现。常用方法如表4所示:
表4 Pandas常用数据筛选和过滤方法
方法 |
用途 |
示例 |
示例说明 |
---|---|---|---|
单列单条件 |
以单独列为基础选择符合条件的数据 |
In: print(data2[data2['col3']==True])Out: col1 col2 col30 2 a True1 1 b True |
选择col3中值为True的所有记录 |
多列单条件 |
以所有的列为基础选择符合条件的数据 |
In: print(data2[data2=='a'])Out: col1 col2 col30 NaN a NaN1 NaN NaN NaN2 NaN a NaN |
选择所有值为a的数据 |
使用“且”进行选择 |
多个筛选条件,且多个条件的逻辑为“且”,用&表示 |
In: print(data2[(data2['col2']=='a') & (data2['col3']==True)])Out: col1 col2 col30 2 a True |
选择col2中值为a且col3值为True的记录 |
使用“或”进行选择 |
多个筛选条件,且多个条件的逻辑为“或”,用|表示 |
In: print(data2[(data2['col2']=='a') | (data2['col3']==True)])Out: col1 col2 col30 2 a True1 1 b True2 0 a False |
选择col2中值为a或col3值为True的记录 |
使用isin查找范围 |
基于特定值的范围的数据查找 |
In: print(data2[data2['col1'].isin([1,2])])Out: col1 col2 col30 2 a True1 1 b True |
筛选col1列值为1或2的记录 |
query |
按照类似sql的规则筛选数据 |
In: print(data2.query('col2=="b"'))Out: col1 col2 col31 1 b 1 |
筛选数据中col2值为b的记录 |
5 数据预处理操作
Pandas的数据预处理基于整个数据框或Series实现,整个预处理工作包含众多项目,本节列出通过Pandas实现的场景功能。本节功能具体如表5所示:
表5 Pandas常用预处理方法
方法 |
用途 |
示例 |
示例说明 |
---|---|---|---|
T |
转置数据框,行和列转换 |
In: print(data2.T)Out: 0 1 2col1 2 1 0col2 a b a |
行索引、列名以及数据相互调换 |
sort_values |
按值排序,默认为正序,可通过ascending=False指定倒序排序 |
In: print(data2.sort_values(['col1']))Out: col1 col22 0 a1 1 b0 2 a |
按colo1列排序 |
sort_index |
按索引排序,默认为正序,可通过ascending=False指定倒序排序 |
In: print( data2.sort_index(ascending=False))Out: col1 col2 col32 0 a 01 1 b 10 2 a 1 |
按索引倒序排序 |
dropna |
去掉缺失值,可通过axis设置为0或 index、1或columns丢弃带有缺失值的行或列 |
In: print(data2.dropna())Out: col1 col2 col30 2 a True1 1 b True2 0 a False |
直接丢弃带有缺失值的行 |
fillna |
填充缺失值,可设置为固定值以及不同的填充方法 |
In: print(data2.fillna(method='bfill'))Out: col1 col2 col30 2 a True1 1 b True2 0 a False |
使用下一个有效记录填充缺失值 |
astype |
转换特定列的类型 |
In: data2['col3'] = data2['col3'].astype(int)In: print(data2.dtypes)Out: col1 int64col2 objectcol3 int32dtype: object |
将col3转换为int型 |
rename |
更新列名 |
In: print(data2.rename(columns= {'col1':'A','col2':'B','col3':'C'}))Out: A B C0 2 a 11 1 b 12 0 a 0 |
将data2的列名更新为A、B、C |
drop_duplicates |
去重重复项,通过指定列设置去重的参照 |
In: print(data2.drop_duplicates(['col3']))Out: col1 col2 col30 2 a 12 0 a 0 |
按col3列去重重复记录 |
replace |
查找替换 |
In: print(data2.replace('a','A'))Out: col1 col2 col30 2 A 11 1 b 12 0 A 0 |
将小写字符a替换为大些字母A |
sample |
抽样 |
In: print(data2.sample(n=2))Out: col1 col2 col30 2 a 11 1 b 1 |
从data2中随机抽取2条数据 |
6 数据合并和匹配
数据合并和匹配是将多个数据框做合并或匹配操作。具体实现如表6所示:
表6 Pandas常用数据合并和匹配方法
方法 |
用途 |
示例 |
示例说明 |
---|---|---|---|
merge |
关联并匹配两个数据框 |
In: print(data2.merge(data1,on='col1',how='inner'))Out: col1 col2_x col3_x col2_y col3_y col40 1 b 1 2 3 4 |
关联data1和data2,主键分别为a列和col1列,内关联方式 |
concat |
合并两个数据框,可按行或列合并 |
In: print(pd.concat((data1,data2),axis=1))Out: col1 col2 col3 col4 col1 col2 col30 1 2 3 4 2 a 11 6 7 8 9 1 b 12 11 12 13 14 0 a 0 |
按列合并data1和data2,可通过指定axis=0按行合并 |
append |
按行追加数据框 |
In: print(data1.append(data2))Out: col1 col2 col3 col40 1 2 3 4.01 6 7 8 9.02 11 12 13 14.00 2 a 1 NaN1 1 b 1 NaN2 0 a 0 NaN |
将data2追加到data,等价于pd.concat((data1,data2), axis=0) |
join |
关联并匹配两个数据框 |
In: print(data1.join(data2,lsuffix='_d1', rsuffix='_d2'))Out: col1_d1 col2_d1 col3_d1 col4 col1_d2 col2_d2 col3_d20 1 2 3 4 2 a 11 6 7 8 9 1 b 12 11 12 13 14 0 a 0 |
将data1和data2关联,设置关联后的列名前缀分别为d1和d2 |
7 数据分类汇总
数据分类汇与Excel中的概念和功能类似。具体实现如表7所示:
表7 Pandas常用数据分类汇总方法
方法 |
用途 |
示例 |
示例说明 |
---|---|---|---|
groupby |
按指定的列做分类汇总 |
In: print(data2.groupby(['col2'])['col1'].sum())Out: col2a 2b 1Name: col1, dtype: int64 |
以col2列为维度,以col1列为指标求和 |
pivot_table |
建立数据透视表视图 |
In: print(pd.pivot_table(data2,index=['col2']))Out: col1 col3col2a 1 0.5b 1 1.0Name: col1, dtype: int64 |
以col2列为索引建立数据透视表,默认计算方式为求均值 |
8 高级函数使用
Pandas能直接实现数据框级别高级函数的应用,而不用写循环遍历每条记录甚至每个值后做计算,这种方式能极大提升计算效率,具体如表8所示:
表8 Pandas常用高级函数
方法 |
用途 |
示例 |
示例说明 |
---|---|---|---|
map |
将一个函数或匿名函数应用到Series或数据框的特定列 |
In: print(data2['col3'].map(lambda x:x*2))Out: 0 21 22 0Name: col3, dtype: int64 |
对data2的col3的每个值乘2 |
apply |
将一个函数或匿名函数应用到Series或数据框 |
In: print(data2.apply(pd.np.cumsum))Out: col1 col2 col30 2 a 11 3 ab 22 3 aba 2 |
将data2的所有列按行(默认)做累加 |
agg |
一次性对多个列做聚合操作 |
In: import numpy as npIn: print(data2.groupby(['col2']).agg( {'col1':np.sum,'col3':np.mean}))Out: col1 col3col2a 2 0.5b 1 1.0 |
在data2中以col2为维度,对col1求和,col3求均值 |
作者:宋天龙
摘自:《Python数据分析与数据化运营(第2版)》
来源:Python爱好者社区