《从0到1学习Flink》—— Flink 写入数据到 ElasticSearch

  • 2019 年 10 月 4 日
  • 笔记

前言

前面 FLink 的文章中我们已经介绍了说 Flink 已经有很多自带的 Connector。

1、《从0到1学习Flink》—— Data Source 介绍

2、《从0到1学习Flink》—— Data Sink 介绍

其中包括了 Source 和 Sink 的,后面我也讲了下如何自定义自己的 Source 和 Sink。

那么今天要做的事情是啥呢?就是介绍一下 Flink 自带的 ElasticSearch Connector,我们今天就用他来做 Sink,将 Kafka 中的数据经过 Flink 处理后然后存储到 ElasticSearch。

准备

安装 ElasticSearch,这里就忽略,自己找我以前的文章,建议安装 ElasticSearch 6.0 版本以上的,毕竟要跟上时代的节奏。

下面就讲解一下生产环境中如何使用 Elasticsearch Sink 以及一些注意点,及其内部实现机制。

Elasticsearch Sink

添加依赖

<dependency>      <groupId>org.apache.flink</groupId>      <artifactId>flink-connector-elasticsearch6_${scala.binary.version}</artifactId>      <version>${flink.version}</version>  </dependency>  

上面这依赖版本号请自己根据使用的版本对应改变下。

下面所有的代码都没有把 import 引入到这里来,如果需要查看更详细的代码,请查看我的 GitHub 仓库地址:

https://github.com/zhisheng17/flink-learning/tree/master/flink-learning-connectors/flink-learning-connectors-es6

这个 module 含有本文的所有代码实现,当然越写到后面自己可能会做一些抽象,所以如果有代码改变很正常,请直接查看全部项目代码。

ElasticSearchSinkUtil 工具类

这个工具类是自己封装的,getEsAddresses 方法将传入的配置文件 es 地址解析出来,可以是域名方式,也可以是 ip + port 形式。addSink 方法是利用了 Flink 自带的 ElasticsearchSink 来封装了一层,传入了一些必要的调优参数和 es 配置参数,下面文章还会再讲些其他的配置。

ElasticSearchSinkUtil.java

public class ElasticSearchSinkUtil {        /**       * es sink       *       * @param hosts es hosts       * @param bulkFlushMaxActions bulk flush size       * @param parallelism 并行数       * @param data 数据       * @param func       * @param <T>       */      public static <T> void addSink(List<HttpHost> hosts, int bulkFlushMaxActions, int parallelism,                                     SingleOutputStreamOperator<T> data, ElasticsearchSinkFunction<T> func) {          ElasticsearchSink.Builder<T> esSinkBuilder = new ElasticsearchSink.Builder<>(hosts, func);          esSinkBuilder.setBulkFlushMaxActions(bulkFlushMaxActions);          data.addSink(esSinkBuilder.build()).setParallelism(parallelism);      }        /**       * 解析配置文件的 es hosts       *       * @param hosts       * @return       * @throws MalformedURLException       */      public static List<HttpHost> getEsAddresses(String hosts) throws MalformedURLException {          String[] hostList = hosts.split(",");          List<HttpHost> addresses = new ArrayList<>();          for (String host : hostList) {              if (host.startsWith("http")) {                  URL url = new URL(host);                  addresses.add(new HttpHost(url.getHost(), url.getPort()));              } else {                  String[] parts = host.split(":", 2);                  if (parts.length > 1) {                      addresses.add(new HttpHost(parts[0], Integer.parseInt(parts[1])));                  } else {                      throw new MalformedURLException("invalid elasticsearch hosts format");                  }              }          }          return addresses;      }  }  

Main 启动类

Main.java

public class Main {      public static void main(String[] args) throws Exception {          //获取所有参数          final ParameterTool parameterTool = ExecutionEnvUtil.createParameterTool(args);          //准备好环境          StreamExecutionEnvironment env = ExecutionEnvUtil.prepare(parameterTool);          //从kafka读取数据          DataStreamSource<Metrics> data = KafkaConfigUtil.buildSource(env);            //从配置文件中读取 es 的地址          List<HttpHost> esAddresses = ElasticSearchSinkUtil.getEsAddresses(parameterTool.get(ELASTICSEARCH_HOSTS));          //从配置文件中读取 bulk flush size,代表一次批处理的数量,这个可是性能调优参数,特别提醒          int bulkSize = parameterTool.getInt(ELASTICSEARCH_BULK_FLUSH_MAX_ACTIONS, 40);          //从配置文件中读取并行 sink 数,这个也是性能调优参数,特别提醒,这样才能够更快的消费,防止 kafka 数据堆积          int sinkParallelism = parameterTool.getInt(STREAM_SINK_PARALLELISM, 5);            //自己再自带的 es sink 上一层封装了下          ElasticSearchSinkUtil.addSink(esAddresses, bulkSize, sinkParallelism, data,                  (Metrics metric, RuntimeContext runtimeContext, RequestIndexer requestIndexer) -> {                      requestIndexer.add(Requests.indexRequest()                              .index(ZHISHENG + "_" + metric.getName())  //es 索引名                              .type(ZHISHENG) //es type                              .source(GsonUtil.toJSONBytes(metric), XContentType.JSON));                  });          env.execute("flink learning connectors es6");      }  }  

配置文件

配置都支持集群模式填写,注意用 , 分隔!

kafka.brokers=localhost:9092  kafka.group.id=zhisheng-metrics-group-test  kafka.zookeeper.connect=localhost:2181  metrics.topic=zhisheng-metrics  stream.parallelism=5  stream.checkpoint.interval=1000  stream.checkpoint.enable=false  elasticsearch.hosts=localhost:9200  elasticsearch.bulk.flush.max.actions=40  stream.sink.parallelism=5  

运行结果

执行 Main 类的 main 方法,我们的程序是只打印 flink 的日志,没有打印存入的日志(因为我们这里没有打日志):

所以看起来不知道我们的 sink 是否有用,数据是否从 kafka 读取出来后存入到 es 了。

你可以查看下本地起的 es 终端或者服务器的 es 日志就可以看到效果了。

es 日志如下:

上图是我本地 Mac 电脑终端的 es 日志,可以看到我们的索引了。

如果还不放心,你也可以在你的电脑装个 kibana,然后更加的直观查看下 es 的索引情况(或者直接敲 es 的命令)

我们用 kibana 查看存入 es 的索引如下:

程序执行了一会,存入 es 的数据量就很大了。

扩展配置

上面代码已经可以实现你的大部分场景了,但是如果你的业务场景需要保证数据的完整性(不能出现丢数据的情况),那么就需要添加一些重试策略,因为在我们的生产环境中,很有可能会因为某些组件不稳定性导致各种问题,所以这里我们就要在数据存入失败的时候做重试操作,这里 flink 自带的 es sink 就支持了,常用的失败重试配置有:

bulk.flush.backoff.enable 用来表示是否开启重试机制    bulk.flush.backoff.type 重试策略,有两种:EXPONENTIAL 指数型(表示多次重试之间的时间间隔按照指数方式进行增长)、CONSTANT 常数型(表示多次重试之间的时间间隔为固定常数)    bulk.flush.backoff.delay 进行重试的时间间隔    bulk.flush.backoff.retries 失败重试的次数    bulk.flush.max.actions: 批量写入时的最大写入条数    bulk.flush.max.size.mb: 批量写入时的最大数据量    bulk.flush.interval.ms: 批量写入的时间间隔,配置后则会按照该时间间隔严格执行,无视上面的两个批量写入配置  

看下啦,就是如下这些配置了,如果你需要的话,可以在这个地方配置扩充了。

FailureHandler 失败处理器

写入 ES 的时候会有这些情况会导致写入 ES 失败:

1、ES 集群队列满了,报如下错误

[I/O dispatcher 13] ERROR o.a.f.s.c.e.ElasticsearchSinkBase - Failed Elasticsearch item request: ElasticsearchException[Elasticsearch exception [type=es_rejected_execution_exception, reason=rejected execution of [email protected] on EsThreadPoolExecutor[name = node-1/write, queue capacity = 200, [email protected]0b373[Running, pool size = 4, active threads = 4, queued tasks = 200, completed tasks = 6277]]]]  

是这样的,我电脑安装的 es 队列容量默认应该是 200,我没有修改过。我这里如果配置的 bulk flush size * 并发 sink 数量 这个值如果大于这个 queue capacity ,那么就很容易导致出现这种因为 es 队列满了而写入失败。

当然这里你也可以通过调大点 es 的队列。参考:https://www.elastic.co/guide/en/elasticsearch/reference/current/modules-threadpool.html

2、ES 集群某个节点挂了

这个就不用说了,肯定写入失败的。跟过源码可以发现 RestClient 类里的 performRequestAsync 方法一开始会随机的从集群中的某个节点进行写入数据,如果这台机器掉线,会进行重试在其他的机器上写入,那么当时写入的这台机器的请求就需要进行失败重试,否则就会把数据丢失!

3、ES 集群某个节点的磁盘满了

这里说的磁盘满了,并不是磁盘真的就没有一点剩余空间的,是 es 会在写入的时候检查磁盘的使用情况,在 85% 的时候会打印日志警告。

这里我看了下源码如下图:

如果你想继续让 es 写入的话就需要去重新配一下 es 让它继续写入,或者你也可以清空些不必要的数据腾出磁盘空间来。

解决方法

DataStream<String> input = ...;    input.addSink(new ElasticsearchSink<>(      config, transportAddresses,      new ElasticsearchSinkFunction<String>() {...},      new ActionRequestFailureHandler() {          @Override          void onFailure(ActionRequest action,                  Throwable failure,                  int restStatusCode,                  RequestIndexer indexer) throw Throwable {                if (ExceptionUtils.containsThrowable(failure, EsRejectedExecutionException.class)) {                  // full queue; re-add document for indexing                  indexer.add(action);              } else if (ExceptionUtils.containsThrowable(failure, ElasticsearchParseException.class)) {                  // malformed document; simply drop request without failing sink              } else {                  // for all other failures, fail the sink                  // here the failure is simply rethrown, but users can also choose to throw custom exceptions                  throw failure;              }          }  }));  

如果仅仅只是想做失败重试,也可以直接使用官方提供的默认的 RetryRejectedExecutionFailureHandler ,该处理器会对 EsRejectedExecutionException 导致到失败写入做重试处理。如果你没有设置失败处理器(failure handler),那么就会使用默认的 NoOpFailureHandler 来简单处理所有的异常。

总结

本文写了 Flink connector es,将 Kafka 中的数据读取并存储到 ElasticSearch 中,文中讲了如何封装自带的 sink,然后一些扩展配置以及 FailureHandler 情况下要怎么处理。(这个问题可是线上很容易遇到的)

关注我

转载请务必注明原创地址为:http://www.54tianzhisheng.cn/2018/12/30/Flink-ElasticSearch-Sink/