强化学习实战 | 自定义Gym环境之扫雷
- 2022 年 1 月 26 日
- 筆記
开始之前 先考虑几个问题: Q1:如何展开无雷区? Q2:如何计算格子的提示数? Q3:如何表示扫雷游戏的状态? A1: …
Continue Reading开始之前 先考虑几个问题: Q1:如何展开无雷区? Q2:如何计算格子的提示数? Q3:如何表示扫雷游戏的状态? A1: …
Continue Reading如果想用强化学习去实现扫雷、2048这种带有数字提示信息的游戏,自然是希望自定义 gym 环境时能把字符显示出来。上网查 …
Continue Reading在 强化学习实战 | 表格型Q-Learning玩井字棋(三)优化,优化 中,我们经过优化和训练,得到了一个还不错的Q表 …
Continue Reading在 强化学习实战 | 表格型Q-Learning玩井字棋(二)开始训练!中,我们让agent“简陋地”训练了起来,经过了 …
Continue Reading在 强化学习实战 | 表格型Q-Learning玩井字棋(一)中,我们构建了以Game() 和 Agent() 类为基础 …
Continue Reading在 强化学习实战 | 自定义Gym环境之井子棋 中,我们构建了一个井字棋环境,并进行了测试。接下来我们可以使用各种强化学 …
Continue Reading在文章 强化学习实战 | 自定义Gym环境 中 ,我们了解了一个简单的环境应该如何定义,并使用 print 简单地呈现了 …
Continue Reading新手的第一个强化学习示例一般都从Open Gym开始。在这些示例中,我们不断地向环境施加动作,并得到观测和奖励,这也是G …
Continue Reading