数理统计16:NP理论、似然比检验、假设检验与区间估计
- 2021 年 2 月 23 日
- 筆記
本文介绍Neyman-Pearson理论,这也是我们会见到的最常见假设检验问题类,这里第一Part的概念介绍略显枯燥,大 …
Continue Reading本文介绍Neyman-Pearson理论,这也是我们会见到的最常见假设检验问题类,这里第一Part的概念介绍略显枯燥,大 …
Continue Reading本文我们继续讨论拟合优度检验的相关问题。由于本系列为我独自完成的,缺少审阅,如果有任何错误,欢迎在评论区中指出,谢谢! …
Continue Reading在之前的内容中,我们完成了参数估计的步骤,今天起我们将进入假设检验部分,这部分内容可参照《数理统计学教程》(陈希孺、倪国 …
Continue Reading上篇文章中,我们了解了枢轴量法,并用它处理了正态分布相关参数的区间估计。事实上,能给出正态分布参数较好形式的区间估计的原 …
Continue Reading在之前的十篇文章中,我们用了九篇文章的篇幅讨论了点估计的相关知识,现在来稍作回顾。 首先,我们讨论了正态分布两个参数—— …
Continue Reading利用L-S定理,充分完备统计量法是寻找UMVUE的最方便方法,不过实际运用时还需要一些小技巧,比如如何写出充分完备统计量 …
Continue Reading昨天我们给出了统计量是UMVUE的一个必要条件:它是充分统计量的函数,且是无偏估计,但这并非充分条件。如果说一个统计量的 …
Continue Reading在之前的学习中,主要基于充分统计量给出点估计,并且注重于点估计的无偏性与相合性。然而,仅有这两个性质是不足的,无偏性只能 …
Continue Reading在上一篇文章的最后,我们指出,参数估计是不可能穷尽讨论的,要想对各种各样的参数作出估计,就需要一定的参数估计方法。今天我 …
Continue Reading今天的主角是指数分布,由此导出\(\Gamma\)分布,同样,读者应尝试一边阅读,一边独立推导出本文的结论。由于本系列为 …
Continue Reading