Python 破解极验滑动验证码

  • 2019 年 10 月 6 日
  • 筆記

阅读目录

  1. 极验滑动验证码
  2. 实现
    • 位移移动需要的基础知识
    • 对比两张图片,找出缺口
    • 获得图片
    • 按照位移移动
    • 详细代码

回到顶部

极验滑动验证码

以上图片是最典型的要属于极验滑动认证了,极验官网:http://www.geetest.com/。

现在极验验证码已经更新到了 3.0 版本,截至 2017 年 7 月全球已有十六万家企业正在使用极验,每天服务响应超过四亿次,广泛应用于直播视频、金融服务、电子商务、游戏娱乐、政府企业等各大类型网站

对于这类验证,如果我们直接模拟表单请求,繁琐的认证参数与认证流程会让你蛋碎一地,我们可以用selenium驱动浏览器来解决这个问题,大致分为以下几个步骤

1、输入用户名,密码

2、点击按钮验证,弹出没有缺口的图

3、获得没有缺口的图片

4、点击滑动按钮,弹出有缺口的图

5、获得有缺口的图片

6、对比两张图片,找出缺口,即滑动的位移

7、按照人的行为行为习惯,把总位移切成一段段小的位移

8、按照位移移动

9、完成登录

回到顶部

实现

位移移动需要的基础知识

位移移动相当于匀变速直线运动,类似于小汽车从起点开始运行到终点的过程(首先为匀加速,然后再匀减速)。

其中a为加速度,且为恒量(即单位时间内的加速度是不变的),t为时间

位移移动的代码实现

def get_track(distance):      '''      拿到移动轨迹,模仿人的滑动行为,先匀加速后匀减速      匀变速运动基本公式:      ①v=v0+at      ②s=v0t+(1/2)at²      ③v²-v0²=2as        :param distance: 需要移动的距离      :return: 存放每0.2秒移动的距离      '''      # 初速度      v=0      # 单位时间为0.2s来统计轨迹,轨迹即0.2内的位移      t=0.1      # 位移/轨迹列表,列表内的一个元素代表0.2s的位移      tracks=[]      # 当前的位移      current=0      # 到达mid值开始减速      mid=distance * 4/5        distance += 10  # 先滑过一点,最后再反着滑动回来        while current < distance:          if current < mid:              # 加速度越小,单位时间的位移越小,模拟的轨迹就越多越详细              a = 2  # 加速运动          else:              a = -3 # 减速运动            # 初速度          v0 = v          # 0.2秒时间内的位移          s = v0*t+0.5*a*(t**2)          # 当前的位置          current += s          # 添加到轨迹列表          tracks.append(round(s))            # 速度已经达到v,该速度作为下次的初速度          v= v0+a*t        # 反着滑动到大概准确位置      for i in range(3):         tracks.append(-2)      for i in range(4):         tracks.append(-1)      return tracks

对比两张图片,找出缺口

def get_distance(image1,image2):      '''        拿到滑动验证码需要移动的距离        :param image1:没有缺口的图片对象        :param image2:带缺口的图片对象        :return:需要移动的距离        '''      # print('size', image1.size)        threshold = 50      for i in range(0,image1.size[0]):  # 260          for j in range(0,image1.size[1]):  # 160              pixel1 = image1.getpixel((i,j))              pixel2 = image2.getpixel((i,j))              res_R = abs(pixel1[0]-pixel2[0]) # 计算RGB差              res_G = abs(pixel1[1] - pixel2[1])  # 计算RGB差              res_B = abs(pixel1[2] - pixel2[2])  # 计算RGB差              if res_R > threshold and res_G > threshold and res_B > threshold:                  return i  # 需要移动的距离

获得图片

def merge_image(image_file,location_list):      """       拼接图片      :param image_file:      :param location_list:      :return:      """      im = Image.open(image_file)      im.save('code.jpg')      new_im = Image.new('RGB',(260,116))      # 把无序的图片 切成52张小图片      im_list_upper = []      im_list_down = []      # print(location_list)      for location in location_list:          # print(location['y'])          if location['y'] == -58: # 上半边              im_list_upper.append(im.crop((abs(location['x']),58,abs(location['x'])+10,116)))          if location['y'] == 0:  # 下半边              im_list_down.append(im.crop((abs(location['x']),0,abs(location['x'])+10,58)))        x_offset = 0      for im in im_list_upper:          new_im.paste(im,(x_offset,0))  # 把小图片放到 新的空白图片上          x_offset += im.size[0]        x_offset = 0      for im in im_list_down:          new_im.paste(im,(x_offset,58))          x_offset += im.size[0]      new_im.show()      return new_im    def get_image(driver,div_path):      '''      下载无序的图片  然后进行拼接 获得完整的图片      :param driver:      :param div_path:      :return:      '''      time.sleep(2)      background_images = driver.find_elements_by_xpath(div_path)      location_list = []      for background_image in background_images:          location = {}          result = re.findall('background-image: url("(.*?)"); background-position: (.*?)px (.*?)px;',background_image.get_attribute('style'))          # print(result)          location['x'] = int(result[0][1])          location['y'] = int(result[0][2])            image_url = result[0][0]          location_list.append(location)        print('==================================')      image_url = image_url.replace('webp','jpg')      # '替换url http://static.geetest.com/pictures/gt/579066de6/579066de6.webp'      image_result = requests.get(image_url).content      # with open('1.jpg','wb') as f:      #     f.write(image_result)      image_file = BytesIO(image_result) # 是一张无序的图片      image = merge_image(image_file,location_list)        return image

按照位移移动

 print('第一步,点击滑动按钮')      ActionChains(driver).click_and_hold(on_element=element).perform()  # 点击鼠标左键,按住不放      time.sleep(1)      print('第二步,拖动元素')      for track in track_list:           ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform() # 鼠标移动到距离当前位置(x,y)      if l<100:          ActionChains(driver).move_by_offset(xoffset=-2, yoffset=0).perform()      else:          ActionChains(driver).move_by_offset(xoffset=-5, yoffset=0).perform()      time.sleep(1)      print('第三步,释放鼠标')      ActionChains(driver).release(on_element=element).perform()

详细代码

from selenium import webdriver  from selenium.webdriver.support.ui import WebDriverWait # 等待元素加载的  from selenium.webdriver.common.action_chains import ActionChains  #拖拽  from selenium.webdriver.support import expected_conditions as EC  from selenium.common.exceptions import TimeoutException, NoSuchElementException  from selenium.webdriver.common.by import By  from PIL import Image  import requests  import time  import re  import random  from io import BytesIO      def merge_image(image_file,location_list):      """       拼接图片      :param image_file:      :param location_list:      :return:      """      im = Image.open(image_file)      im.save('code.jpg')      new_im = Image.new('RGB',(260,116))      # 把无序的图片 切成52张小图片      im_list_upper = []      im_list_down = []      # print(location_list)      for location in location_list:          # print(location['y'])          if location['y'] == -58: # 上半边              im_list_upper.append(im.crop((abs(location['x']),58,abs(location['x'])+10,116)))          if location['y'] == 0:  # 下半边              im_list_down.append(im.crop((abs(location['x']),0,abs(location['x'])+10,58)))        x_offset = 0      for im in im_list_upper:          new_im.paste(im,(x_offset,0))  # 把小图片放到 新的空白图片上          x_offset += im.size[0]        x_offset = 0      for im in im_list_down:          new_im.paste(im,(x_offset,58))          x_offset += im.size[0]      new_im.show()      return new_im    def get_image(driver,div_path):      '''      下载无序的图片  然后进行拼接 获得完整的图片      :param driver:      :param div_path:      :return:      '''      time.sleep(2)      background_images = driver.find_elements_by_xpath(div_path)      location_list = []      for background_image in background_images:          location = {}          result = re.findall('background-image: url("(.*?)"); background-position: (.*?)px (.*?)px;',background_image.get_attribute('style'))          # print(result)          location['x'] = int(result[0][1])          location['y'] = int(result[0][2])            image_url = result[0][0]          location_list.append(location)        print('==================================')      image_url = image_url.replace('webp','jpg')      # '替换url http://static.geetest.com/pictures/gt/579066de6/579066de6.webp'      image_result = requests.get(image_url).content      # with open('1.jpg','wb') as f:      #     f.write(image_result)      image_file = BytesIO(image_result) # 是一张无序的图片      image = merge_image(image_file,location_list)        return image    def get_track(distance):      '''      拿到移动轨迹,模仿人的滑动行为,先匀加速后匀减速      匀变速运动基本公式:      ①v=v0+at      ②s=v0t+(1/2)at²      ③v²-v0²=2as        :param distance: 需要移动的距离      :return: 存放每0.2秒移动的距离      '''      # 初速度      v=0      # 单位时间为0.2s来统计轨迹,轨迹即0.2内的位移      t=0.2      # 位移/轨迹列表,列表内的一个元素代表0.2s的位移      tracks=[]      # 当前的位移      current=0      # 到达mid值开始减速      mid=distance * 7/8        distance += 10  # 先滑过一点,最后再反着滑动回来      # a = random.randint(1,3)      while current < distance:          if current < mid:              # 加速度越小,单位时间的位移越小,模拟的轨迹就越多越详细              a = random.randint(2,4)  # 加速运动          else:              a = -random.randint(3,5) # 减速运动            # 初速度          v0 = v          # 0.2秒时间内的位移          s = v0*t+0.5*a*(t**2)          # 当前的位置          current += s          # 添加到轨迹列表          tracks.append(round(s))            # 速度已经达到v,该速度作为下次的初速度          v= v0+a*t        # 反着滑动到大概准确位置      for i in range(4):         tracks.append(-random.randint(2,3))      for i in range(4):         tracks.append(-random.randint(1,3))      return tracks      def get_distance(image1,image2):      '''        拿到滑动验证码需要移动的距离        :param image1:没有缺口的图片对象        :param image2:带缺口的图片对象        :return:需要移动的距离        '''      # print('size', image1.size)        threshold = 50      for i in range(0,image1.size[0]):  # 260          for j in range(0,image1.size[1]):  # 160              pixel1 = image1.getpixel((i,j))              pixel2 = image2.getpixel((i,j))              res_R = abs(pixel1[0]-pixel2[0]) # 计算RGB差              res_G = abs(pixel1[1] - pixel2[1])  # 计算RGB差              res_B = abs(pixel1[2] - pixel2[2])  # 计算RGB差              if res_R > threshold and res_G > threshold and res_B > threshold:                  return i  # 需要移动的距离        def main_check_code(driver, element):      """       拖动识别验证码      :param driver:      :param element:      :return:      """      image1 = get_image(driver, '//div[@class="gt_cut_bg gt_show"]/div')      image2 = get_image(driver, '//div[@class="gt_cut_fullbg gt_show"]/div')      # 图片上 缺口的位置的x坐标        # 2 对比两张图片的所有RBG像素点,得到不一样像素点的x值,即要移动的距离      l = get_distance(image1, image2)      print('l=',l)      # 3 获得移动轨迹      track_list = get_track(l)      print('第一步,点击滑动按钮')      ActionChains(driver).click_and_hold(on_element=element).perform()  # 点击鼠标左键,按住不放      time.sleep(1)      print('第二步,拖动元素')      for track in track_list:           ActionChains(driver).move_by_offset(xoffset=track, yoffset=0).perform()  # 鼠标移动到距离当前位置(x,y)       time.sleep(0.002)
    # if l>100:        ActionChains(driver).move_by_offset(xoffset=-random.randint(2,5), yoffset=0).perform()      time.sleep(1)      print('第三步,释放鼠标')      ActionChains(driver).release(on_element=element).perform()      time.sleep(5)      def main_check_slider(driver):      """      检查滑动按钮是否加载      :param driver:      :return:      """      while True:          try :              driver.get('http://www.cnbaowen.net/api/geetest/')              element = WebDriverWait(driver, 30, 0.5).until(EC.element_to_be_clickable((By.CLASS_NAME, 'gt_slider_knob')))              if element:                  return element          except TimeoutException as e:              print('超时错误,继续')              time.sleep(5)      if __name__ == '__main__':      try:          count = 6  # 最多识别6次          driver = webdriver.Chrome()          # 等待滑动按钮加载完成          element = main_check_slider(driver)          while count > 0:              main_check_code(driver,element)              time.sleep(2)              try:                  success_element = (By.CSS_SELECTOR, '.gt_holder .gt_ajax_tip.gt_success')                  # 得到成功标志                  print('suc=',driver.find_element_by_css_selector('.gt_holder .gt_ajax_tip.gt_success'))                  success_images = WebDriverWait(driver, 20).until(EC.presence_of_element_located(success_element))                  if success_images:                      print('成功识别!!!!!!')                      count = 0                      break              except NoSuchElementException as e:                  print('识别错误,继续')                  count -= 1                  time.sleep(2)          else:              print('too many attempt check code ')              exit('退出程序')      finally:          driver.close()

成功识别标志css

本文来源作者:一只小小寄居蟹

链接:https://www.cnblogs.com/xiao-apple36/p/8878960.html

如有侵权,请联系我们删除