Pandas和Numpy的一些金融相关的操作(一)

Pandas和Numpy的一些金融相关的操作

给定一个净值序列,求出最大回撤

# arr是一个净值的np.ndarray  i = np.argmax(  (np.maximum.acumulate(arr) - arr) / np.maximum.acculate(arr))    if i == 0:   max_draw_dowm = 0  else:   j = np.maximum(arr[:i])  # 开始位置   max_draw_down = (arr[j] - arr[i]) / arr[j]    # i为回撤结束位置 j为回撤开始位置  # 可以用动态规划解决最小子列和的思路求出最大回撤 时间复杂度为O(n)  

已知净值求日收益率

# net_value是一个净值的pd.Series 按照时间排序 较早的时间在前面  daily_return = net_value.pct_change()  

已知日收益率求净值

# daily_return是一个日收益率的pd.Series 按照时间排序 较早的时间在前面  _net_value = (daily_return + 1).cumprod()  # 这时候第一个值还不是1  net_value = _net_value / _net_value.iloc[0]  

已知净值求累计收益率

# net_value是一个净值的pd.Series 按照时间排序 较早的时间在前面  cum_return = net_value / net_value.iloc[0] - 1