keras中的损失函数

  • 2020 年 3 月 31 日
  • 筆記

损失函数是模型优化的目标,所以又叫目标函数、优化评分函数,在keras中,模型编译的参数loss指定了损失函数的类别,有两种指定方法:

model.compile(loss='mean_squared_error', optimizer='sgd')

或者

from keras import losses  model.compile(loss=losses.mean_squared_error, optimizer='sgd')

你可以传递一个现有的损失函数名,或者一个TensorFlow/Theano符号函数。该符号函数为每个数据点返回一个标量,有以下两个参数:

  • y_true: 真实标签. TensorFlow/Theano张量
  • y_pred: 预测值. TensorFlow/Theano张量,其shape与y_true相同

实际的优化目标是所有数据点的输出数组的平均值。

mean_squared_error:均方误差

mean_squared_error(y_true, y_pred)

源码:

def mean_squared_error(y_true, y_pred):      return K.mean(K.square(y_pred - y_true), axis=-1)

说明:

MSE:

mean_absolute_error

mean_absolute_error(y_true, y_pred)

源码:

def mean_absolute_error(y_true, y_pred):      return K.mean(K.abs(y_pred - y_true), axis=-1)

说明:

MAE:

mean_absolute_percentage_error

mean_absolute_percentage_error(y_true, y_pred)

源码:

def mean_absolute_percentage_error(y_true, y_pred):      diff = K.abs((y_true - y_pred) / K.clip(K.abs(y_true),                                              K.epsilon(),                                              None))      return 100. * K.mean(diff, axis=-1)

说明:

MAPE:

mean_squared_logarithmic_error

mean_squared_logarithmic_error(y_true, y_pred)

源码:

def mean_squared_logarithmic_error(y_true, y_pred):      first_log = K.log(K.clip(y_pred, K.epsilon(), None) + 1.)      second_log = K.log(K.clip(y_true, K.epsilon(), None) + 1.)      return K.mean(K.square(first_log - second_log), axis=-1)

说明:

MAPE:

squared_hinge

squared_hinge(y_true, y_pred)

源码:

def squared_hinge(y_true, y_pred):      return K.mean(K.square(K.maximum(1. - y_true * y_pred, 0.)), axis=-1)

说明:

hinge

hinge(y_true, y_pred)

源码:

def hinge(y_true, y_pred):      return K.mean(K.maximum(1. - y_true * y_pred, 0.), axis=-1)

说明:

categorical_hinge

categorical_hinge(y_true, y_pred)

源码:

def categorical_hinge(y_true, y_pred):      pos = K.sum(y_true * y_pred, axis=-1)      neg = K.max((1. - y_true) * y_pred, axis=-1)      return K.maximum(0., neg - pos + 1.)

logcosh

logcosh(y_true, y_pred)

源码:

def logcosh(y_true, y_pred):      """Logarithm of the hyperbolic cosine of the prediction error.      `log(cosh(x))` is approximately equal to `(x ** 2) / 2` for small `x` and      to `abs(x) - log(2)` for large `x`. This means that 'logcosh' works mostly      like the mean squared error, but will not be so strongly affected by the      occasional wildly incorrect prediction.      # Arguments          y_true: tensor of true targets.          y_pred: tensor of predicted targets.      # Returns          Tensor with one scalar loss entry per sample.      """      def _logcosh(x):          return x + K.softplus(-2. * x) - K.log(2.)      return K.mean(_logcosh(y_pred - y_true), axis=-1)

categorical_crossentropy

categorical_crossentropy(y_true, y_pred)

源码:

def categorical_crossentropy(y_true, y_pred):      return K.categorical_crossentropy(y_true, y_pred)

注意: 当使用categorical_crossentropy损失时,你的目标值应该是分类格式 (即,如果你有10个类,每个样本的目标值应该是一个10维的向量,这个向量除了表示类别的那个索引为1,其他均为0)。为了将 整数目标值 转换为 分类目标值,你可以使用Keras实用函数to_categorical:

from keras.utils.np_utils import to_categorical  categorical_labels = to_categorical(int_labels, num_classes=None)

sparse_categorical_crossentropy

sparse_categorical_crossentropy(y_true, y_pred)

源码:

def sparse_categorical_crossentropy(y_true, y_pred):      return K.sparse_categorical_crossentropy(y_true, y_pred)  def sparse_categorical_crossentropy(target, output, from_logits=False):      """Categorical crossentropy with integer targets.      # Arguments          target: An integer tensor.          output: A tensor resulting from a softmax              (unless `from_logits` is True, in which              case `output` is expected to be the logits).          from_logits: Boolean, whether `output` is the              result of a softmax, or is a tensor of logits.      # Returns          Output tensor.      """      # Note: tf.nn.sparse_softmax_cross_entropy_with_logits      # expects logits, Keras expects probabilities.      if not from_logits:          _epsilon = _to_tensor(epsilon(), output.dtype.base_dtype)          output = tf.clip_by_value(output, _epsilon, 1 - _epsilon)          output = tf.log(output)        output_shape = output.get_shape()      targets = cast(flatten(target), 'int64')      logits = tf.reshape(output, [-1, int(output_shape[-1])])      res = tf.nn.sparse_softmax_cross_entropy_with_logits(          labels=targets,          logits=logits)      if len(output_shape) >= 3:          # if our output includes timestep dimension          # or spatial dimensions we need to reshape          return tf.reshape(res, tf.shape(output)[:-1])      else:          return res

binary_crossentropy

binary_crossentropy(y_true, y_pred)

源码:

def binary_crossentropy(y_true, y_pred):      return K.mean(K.binary_crossentropy(y_true, y_pred), axis=-1)  def binary_crossentropy(target, output, from_logits=False):      """Binary crossentropy between an output tensor and a target tensor.      # Arguments          target: A tensor with the same shape as `output`.          output: A tensor.          from_logits: Whether `output` is expected to be a logits tensor.              By default, we consider that `output`              encodes a probability distribution.      # Returns          A tensor.      """      # Note: tf.nn.sigmoid_cross_entropy_with_logits      # expects logits, Keras expects probabilities.      if not from_logits:          # transform back to logits          _epsilon = _to_tensor(epsilon(), output.dtype.base_dtype)          output = tf.clip_by_value(output, _epsilon, 1 - _epsilon)          output = tf.log(output / (1 - output))        return tf.nn.sigmoid_cross_entropy_with_logits(labels=target,                                                     logits=output)

kullback_leibler_divergence

kullback_leibler_divergence(y_true, y_pred)

源码:

def kullback_leibler_divergence(y_true, y_pred):      y_true = K.clip(y_true, K.epsilon(), 1)      y_pred = K.clip(y_pred, K.epsilon(), 1)      return K.sum(y_true * K.log(y_true / y_pred), axis=-1)

poisson

poisson(y_true, y_pred)

源码:

def poisson(y_true, y_pred):      return K.mean(y_pred - y_true * K.log(y_pred + K.epsilon()), axis=-1)

说明:

cosine_proximity

cosine_proximity(y_true, y_pred)

源码:

def cosine_proximity(y_true, y_pred):      y_true = K.l2_normalize(y_true, axis=-1)      y_pred = K.l2_normalize(y_pred, axis=-1)      return -K.sum(y_true * y_pred, axis=-1)

说明:

简写:

mse = MSE = mean_squared_error  mae = MAE = mean_absolute_error  mape = MAPE = mean_absolute_percentage_error  msle = MSLE = mean_squared_logarithmic_error  kld = KLD = kullback_leibler_divergence  cosine = cosine_proximity

参考:

Keras中文文档

Loss Functions in Artificial Neural Networks