表达矩阵处理—表达QC(reads)

  • 2020 年 3 月 31 日
  • 筆記

7. 清理表达矩阵

7.2

表达QC(reads)

library(SingleCellExperiment)  library(scater)  options(stringsAsFactors = FALSE)
reads <- read.table("tung/reads.txt", sep = "t")  anno <- read.table("tung/annotation.txt", sep = "t", header = TRUE)
head(reads[ , 1:3])
##                 NA19098.r1.A01 NA19098.r1.A02 NA19098.r1.A03  ## ENSG00000237683              0              0              0  ## ENSG00000187634              0              0              0  ## ENSG00000188976             57            140              1  ## ENSG00000187961              0              0              0  ## ENSG00000187583              0              0              0  ## ENSG00000187642              0              0              0
head(anno)
##   individual replicate well      batch      sample_id  ## 1    NA19098        r1  A01 NA19098.r1 NA19098.r1.A01  ## 2    NA19098        r1  A02 NA19098.r1 NA19098.r1.A02  ## 3    NA19098        r1  A03 NA19098.r1 NA19098.r1.A03  ## 4    NA19098        r1  A04 NA19098.r1 NA19098.r1.A04  ## 5    NA19098        r1  A05 NA19098.r1 NA19098.r1.A05  ## 6    NA19098        r1  A06 NA19098.r1 NA19098.r1.A06
reads <- SingleCellExperiment(      assays = list(counts = as.matrix(reads)),      colData = anno  )
keep_feature <- rowSums(counts(reads) > 0) > 0  reads <- reads[keep_feature, ]
isSpike(reads, "ERCC") <- grepl("^ERCC-", rownames(reads))  isSpike(reads, "MT") <- rownames(reads) %in%      c("ENSG00000198899", "ENSG00000198727", "ENSG00000198888",      "ENSG00000198886", "ENSG00000212907", "ENSG00000198786",      "ENSG00000198695", "ENSG00000198712", "ENSG00000198804",      "ENSG00000198763", "ENSG00000228253", "ENSG00000198938",      "ENSG00000198840")
reads <- calculateQCMetrics(      reads,      feature_controls = list(          ERCC = isSpike(reads, "ERCC"),          MT = isSpike(reads, "MT")      )  )
hist(      reads$total_counts,      breaks = 100  )  abline(v = 1.3e6, col = "red")
filter_by_total_counts <- (reads$total_counts > 1.3e6)
table(filter_by_total_counts)
## filter_by_total_counts  ## FALSE  TRUE  ##   180   684
hist(      reads$total_features,      breaks = 100  )  abline(v = 7000, col = "red")
filter_by_expr_features <- (reads$total_features > 7000)
table(filter_by_expr_features)
## filter_by_expr_features  ## FALSE  TRUE  ##   116   748
plotPhenoData(      reads,      aes_string(          x = "total_features",          y = "pct_counts_MT",          colour = "batch"      )  )
plotPhenoData(      reads,      aes_string(          x = "total_features",          y = "pct_counts_ERCC",          colour = "batch"      )  )
filter_by_ERCC <-      reads$batch != "NA19098.r2" & reads$pct_counts_ERCC < 25  table(filter_by_ERCC)
## filter_by_ERCC  ## FALSE  TRUE  ##   103   761
filter_by_MT <- reads$pct_counts_MT < 30  table(filter_by_MT)
## filter_by_MT  ## FALSE  TRUE  ##    18   846
reads$use <- (      # sufficient features (genes)      filter_by_expr_features &      # sufficient molecules counted      filter_by_total_counts &      # sufficient endogenous RNA      filter_by_ERCC &      # remove cells with unusual number of reads in MT genes      filter_by_MT  )
table(reads$use)
##  ## FALSE  TRUE  ##   258   606
reads <- plotPCA(      reads,      size_by = "total_features",      shape_by = "use",      pca_data_input = "pdata",      detect_outliers = TRUE,      return_SCE = TRUE  )
table(reads$outlier)
##  ## FALSE  TRUE  ##   756   108
library(limma)
##  ## Attaching package: 'limma'
## The following object is masked from 'package:scater':  ##  ##     plotMDS
## The following object is masked from 'package:BiocGenerics':  ##  ##     plotMA
auto <- colnames(reads)[reads$outlier]  man <- colnames(reads)[!reads$use]  venn.diag <- vennCounts(      cbind(colnames(reads) %in% auto,      colnames(reads) %in% man)  )  vennDiagram(      venn.diag,      names = c("Automatic", "Manual"),      circle.col = c("blue", "green")  )
plotQC(reads, type = "highest-expression")
filter_genes <- apply(      counts(reads[, colData(reads)$use]),      1,      function(x) length(x[x > 1]) >= 2  )  rowData(reads)$use <- filter_genes
table(filter_genes)
## filter_genes  ## FALSE  TRUE  ##  2664 16062
dim(reads[rowData(reads)$use, colData(reads)$use])
## [1] 16062   606
assay(reads, "logcounts_raw") <- log2(counts(reads) + 1)  reducedDim(reads) <- NULL
saveRDS(reads, file = "tung/reads.rds")

通过比较图7.6和图7.13,很明显基于read的过滤比基于UMI的分析去除了更多的细胞。如果您返回并比较结果,您应该能够得出结论,ERCC和MT过滤器对于基于read的分析更严格。

sessionInfo()
## R version 3.4.3 (2017-11-30)  ## Platform: x86_64-pc-linux-gnu (64-bit)  ## Running under: Debian GNU/Linux 9 (stretch)  ##  ## Matrix products: default  ## BLAS: /usr/lib/openblas-base/libblas.so.3  ## LAPACK: /usr/lib/libopenblasp-r0.2.19.so  ##  ## locale:  ##  [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C  ##  [3] LC_TIME=en_US.UTF-8        LC_COLLATE=en_US.UTF-8  ##  [5] LC_MONETARY=en_US.UTF-8    LC_MESSAGES=C  ##  [7] LC_PAPER=en_US.UTF-8       LC_NAME=C  ##  [9] LC_ADDRESS=C               LC_TELEPHONE=C  ## [11] LC_MEASUREMENT=en_US.UTF-8 LC_IDENTIFICATION=C  ##  ## attached base packages:  ## [1] parallel  stats4    methods   stats     graphics  grDevices utils  ## [8] datasets  base  ##  ## other attached packages:  ##  [1] limma_3.34.9               scater_1.6.3  ##  [3] ggplot2_2.2.1              SingleCellExperiment_1.0.0  ##  [5] SummarizedExperiment_1.8.1 DelayedArray_0.4.1  ##  [7] matrixStats_0.53.1         Biobase_2.38.0  ##  [9] GenomicRanges_1.30.3       GenomeInfoDb_1.14.0  ## [11] IRanges_2.12.0             S4Vectors_0.16.0  ## [13] BiocGenerics_0.24.0        knitr_1.20  ##  ## loaded via a namespace (and not attached):  ##   [1] backports_1.1.2        plyr_1.8.4             lazyeval_0.2.1  ##   [4] sp_1.2-7               shinydashboard_0.6.1   splines_3.4.3  ##   [7] digest_0.6.15          htmltools_0.3.6        viridis_0.5.0  ##  [10] magrittr_1.5           memoise_1.1.0          cluster_2.0.6  ##  [13] prettyunits_1.0.2      colorspace_1.3-2       blob_1.1.0  ##  [16] rrcov_1.4-3            xfun_0.1               dplyr_0.7.4  ##  [19] RCurl_1.95-4.10        tximport_1.6.0         lme4_1.1-15  ##  [22] bindr_0.1              zoo_1.8-1              glue_1.2.0  ##  [25] gtable_0.2.0           zlibbioc_1.24.0        XVector_0.18.0  ##  [28] MatrixModels_0.4-1     car_2.1-6              kernlab_0.9-25  ##  [31] prabclus_2.2-6         DEoptimR_1.0-8         SparseM_1.77  ##  [34] VIM_4.7.0              scales_0.5.0           sgeostat_1.0-27  ##  [37] mvtnorm_1.0-7          DBI_0.7                GGally_1.3.2  ##  [40] edgeR_3.20.9           Rcpp_0.12.15           sROC_0.1-2  ##  [43] viridisLite_0.3.0      xtable_1.8-2           progress_1.1.2  ##  [46] laeken_0.4.6           bit_1.1-12             mclust_5.4  ##  [49] vcd_1.4-4              httr_1.3.1             RColorBrewer_1.1-2  ##  [52] fpc_2.1-11             modeltools_0.2-21      pkgconfig_2.0.1  ##  [55] reshape_0.8.7          XML_3.98-1.10          flexmix_2.3-14  ##  [58] nnet_7.3-12            locfit_1.5-9.1         labeling_0.3  ##  [61] rlang_0.2.0            reshape2_1.4.3         AnnotationDbi_1.40.0  ##  [64] munsell_0.4.3          tools_3.4.3            RSQLite_2.0  ##  [67] pls_2.6-0              evaluate_0.10.1        stringr_1.3.0  ##  [70] cvTools_0.3.2          yaml_2.1.17            bit64_0.9-7  ##  [73] robustbase_0.92-8      bindrcpp_0.2           nlme_3.1-129  ##  [76] mime_0.5               quantreg_5.35          biomaRt_2.34.2  ##  [79] compiler_3.4.3         pbkrtest_0.4-7         beeswarm_0.2.3  ##  [82] e1071_1.6-8            tibble_1.4.2           robCompositions_2.0.6  ##  [85] pcaPP_1.9-73           stringi_1.1.6          highr_0.6  ##  [88] lattice_0.20-34        trimcluster_0.1-2      Matrix_1.2-7.1  ##  [91] nloptr_1.0.4           pillar_1.2.1           lmtest_0.9-35  ##  [94] data.table_1.10.4-3    cowplot_0.9.2          bitops_1.0-6  ##  [97] httpuv_1.3.6.1         R6_2.2.2               bookdown_0.7  ## [100] gridExtra_2.3          vipor_0.4.5            boot_1.3-18  ## [103] MASS_7.3-45            assertthat_0.2.0       rhdf5_2.22.0  ## [106] rprojroot_1.3-2        rjson_0.2.15           GenomeInfoDbData_1.0.0  ## [109] diptest_0.75-7         mgcv_1.8-23            grid_3.4.3  ## [112] class_7.3-14           minqa_1.2.4            rmarkdown_1.8  ## [115] mvoutlier_2.0.9        shiny_1.0.5            ggbeeswarm_0.6.0