Spark提交任务入口源码分析
- 2020 年 3 月 30 日
- 筆記
我们平常在使用Spark进行提交代码的时候,一般是直接在装有spark客户端的机器上提交jar包执行。运行命令如下:
/data/opt/spark-2.3.1-bin-hadoop2.7/bin/spark-submit --class com.tencent.th.dwd.t_dwd_evt_user_action_log_s --total-executor-cores 300 --conf spark.sql.shuffle.partitions=500 SparkV2-1.0.1.jar repartition_num=300
这里的执行入口spark-submit是什么呢?请看:
cat /data/opt/spark-2.3.1-bin-hadoop2.7/bin/spark-submit if [ -z "${SPARK_HOME}" ]; then source "$(dirname "$0")"/find-spark-home fi # disable randomized hash for string in Python 3.3+ export PYTHONHASHSEED=0 export SPARK_HOME=/data/opt/spark-2.3.1-bin-hadoop2.7/ exec "${SPARK_HOME}"/bin/spark-class org.apache.spark.deploy.SparkSubmit "$@"
这里首先是初始化SPARK_HOME目录,然后执行编译后的类:org.apache.spark.deploy.SparkSubmit,那么这个入口类做了哪些工作呢?请看源代码:
def main(args: Array[String]): Unit = { //这里将传入的args参数进行初始化 val appArgs = new SparkSubmitArguments(args) //判断参数是否有效合法 if (appArgs.verbose) { // scalastyle:off println printStream.println(appArgs) // scalastyle:on println } //判断执行类别 appArgs.action match { case SparkSubmitAction.SUBMIT => submit(appArgs) case SparkSubmitAction.KILL => kill(appArgs) case SparkSubmitAction.REQUEST_STATUS => requestStatus(appArgs) } }
如果提交命令正确,开始执行spark:
/** * Submit the application using the provided parameters. * * This runs in two steps. First, we prepare the launch environment by setting up * the appropriate classpath, system properties, and application arguments for * running the child main class based on the cluster manager and the deploy mode. * Second, we use this launch environment to invoke the main method of the child * main class. */ @tailrec private def submit(args: SparkSubmitArguments): Unit = { /**准备执行环境,这里主要得到了以下4个参数: (1)childArgs: 子进程的参数 (2)childClasspath: 子进程的执行环境 (3)sysProps:系统参数 (4)childMainClass:子类名 **/ val (childArgs, childClasspath, sysProps, childMainClass) = prepareSubmitEnvironment(args) //开始执行Spark任务 def doRunMain(): Unit = { //是否需要创建代理用户 if (args.proxyUser != null) { val proxyUser = UserGroupInformation.createProxyUser(args.proxyUser, UserGroupInformation.getCurrentUser()) try { proxyUser.doAs(new PrivilegedExceptionAction[Unit]() { override def run(): Unit = { runMain(childArgs, childClasspath, sysProps, childMainClass, args.verbose) } }) } catch { case e: Exception => // Hadoop's AuthorizationException suppresses the exception's stack trace, which // makes the message printed to the output by the JVM not very helpful. Instead, // detect exceptions with empty stack traces here, and treat them differently. if (e.getStackTrace().length == 0) { // scalastyle:off println printStream.println(s"ERROR: ${e.getClass().getName()}: ${e.getMessage()}") // scalastyle:on println exitFn(1) } else { throw e } } } else { runMain(childArgs, childClasspath, sysProps, childMainClass, args.verbose) } }
执行的时候无论创建代理用户,最后都是调用 runMain方法开始执行,在runMain方法中,先是初始化判断参数是否verbose,然后是加载jar包:
for (jar <- childClasspath) { addJarToClasspath(jar, loader) }
接下来做了两件核心的事情,第一个:加载要执行的类:
mainClass = Utils.classForName(childMainClass)
第二个,判断要执行的任务的入口:
val mainMethod = mainClass.getMethod("main", new Array[String](0).getClass)
最后一步,通过反射调用要执行类的任务:
mainMethod.invoke(null, childArgs.toArray)
整体来看,执行入口的代码还是比较清晰易懂的。