基因在任意癌症表达量相关性
- 2020 年 3 月 30 日
- 筆記
第四单元第一讲:计算基因在任意癌症表达量相关性 课程链接在:http://jm.grazy.cn/index/mulitcourse/detail.html?cid=53
从题目可以看到,这次的主角有两个:基因和癌症中的表达量
针对第一个:我们要知道有哪些基因

从这个表中复制基因名,然后放到R中,但要注意它们中间是,
分隔,因此要使用str_split
拆分成单独的字符串:
library(stringr) vCAF='Esam, Gng11, Higd1b, Cox4i2, Cygb, Gja4, Eng' vCAF=unlist(str_split(vCAF,', ')) # 或者直接使用 as.character(str_split(vCAF, ', ')) mCAF='Dcn, Col12a1, Mmp2, Lum, Mrc2, Bicc1, Lrrc15, Mfap5, Col3A1, Mmp14, Spon1, Pdgfrl, Serpinf1, Lrp1, Gfpt2, Ctsk, Cdh11, Itgbl1, Col6a2, Postn, Ccdc80, Lox, Vcan, Col1a1, Fbn1, Col1a2, Pdpn, Col6a1, Fstl1, Col5a2, Aebp1' mCAF=unlist(str_split(mCAF,', ')) > vCAF [1] "Esam" "Gng11" "Higd1b" "Cox4i2" "Cygb" "Gja4" "Eng" > head(mCAF) [1] "Dcn" "Col12a1" "Mmp2" "Lum" "Mrc2" "Bicc1"
看到基因名的开头大写,其余小写,就说明是小鼠的基因名
针对第二个:如何获取癌症基因表达量信息
文章对四种癌症进行了讨论:breast cancer, pancreatic ductal adenocarcinoma, lung adenocarcinoma, and renal clear cell carcinoma
目的就是分别画这样一张图:

分析这张图片:这是一个相关性图,如果要做相关性的图,就要有数值型的数据,那么就是基因表达量了。我们现在有了基因名,缺的就是一个表达矩阵。因此如何获取表达矩阵就是最大的一个问题了
首先下载乳腺癌的表达矩阵
网址:https://xenabrowser.net/datapages/
但是如果从这里直接搜索BRCA
的话,会有两个结果(这里选择GDC的表达矩阵):
- [GDC TCGA Breast Cancer (BRCA)](https://xenabrowser.net/datapages/?cohort=GDC TCGA Breast Cancer (BRCA)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443) (20 datasets) 包含了6万多个基因的表达矩阵(
60,489 identifiers X 1217 samples
),因为它直接使用的GenCode注释文件,不管编码与否都算作基因;基因名用的Ensembl;使用了log2(count+1)

- [TCGA Breast Cancer (BRCA)](https://xenabrowser.net/datapages/?cohort=TCGA Breast Cancer (BRCA)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443) (30 datasets) 其中只有2万多个基因(
20,531 identifiers X 1218 samples
),并且得到的是RSEM标准化表达量(使用了log2(norm_count+1)
);使用SYMBOL基因名

点击下图链接开始下载:文件大小133M

然后读入乳腺癌的表达矩阵
使用fread
函数
library(data.table) filepath <- file.choose()# 然后会弹出来一个对话框,找到自己下载的TCGA-BRCA.htseq_counts.tsv.gz,点OK,然后这个文件的路径就保存在了filepath a=fread(filepath ,data.table=F) dim(a) # [1] 60488 1218 a[1:4,1:4] # Ensembl_ID TCGA-E9-A1NI-01A TCGA-A1-A0SP-01A TCGA-BH-A201-01A # 1 ENSG00000000003.13 8.787903 12.064743 11.801304 # 2 ENSG00000000005.5 0.000000 2.807355 4.954196 # 3 ENSG00000000419.11 11.054604 11.292897 11.314017 # 4 ENSG00000000457.12 10.246741 9.905387 11.117643
接着进行ID转换,Ensembl =》 Symbol ID
需要用到人类的物种注释包:org.Hs.eg.db
library(org.Hs.eg.db) # 先看看包的简介 > org.Hs.eg.db OrgDb object: | DBSCHEMAVERSION: 2.1 | Db type: OrgDb | Supporting package: AnnotationDbi | DBSCHEMA: HUMAN_DB | ORGANISM: Homo sapiens | SPECIES: Human | EGSOURCEDATE: 2019-Apr26 | EGSOURCENAME: Entrez Gene | EGSOURCEURL: ftp://ftp.ncbi.nlm.nih.gov/gene/DATA ... # 再看看这个注释包里有什么信息 > head(ls("package:org.Hs.eg.db")) [1] "org.Hs.eg" "org.Hs.eg.db" "org.Hs.egACCNUM" "org.Hs.egACCNUM2EG" "org.Hs.egALIAS2EG" [6] "org.Hs.egCHR" # 然后看看其中Ensembl的基因是什么样子 > head(toTable(org.Hs.egENSEMBL)) gene_id ensembl_id 1 1 ENSG00000121410 2 2 ENSG00000175899 3 3 ENSG00000256069 4 9 ENSG00000171428 5 10 ENSG00000156006 6 12 ENSG00000196136
发现相对于我们得到TCGA的Emsemble ID,它没有小数点后面的部分,因此我们也需要切割Ensembl ID =>str_split()
library(stringr) esid=str_split(a$Ensembl_ID, '[.]',simplify = T)[,1] > head(esid) [1] "ENSG00000000003" "ENSG00000000005" "ENSG00000000419" "ENSG00000000457" "ENSG00000000460" "ENSG00000000938" rownames(a)=esid
开始进行ID转换 => select()或bitr()
这里二者结果一样
# 第一种方式:官方函数 e2s=select(org.Hs.eg.db,keys = esid,columns = c( "ENSEMBL" , "SYMBOL" ),keytype = 'ENSEMBL') dim(e2s) # [1] 60686 2 #其中很大一部分的Ensemble ID是没有Symbol对应的。如果出去symbol为NA的值:最后也就剩下25591个基因 nrow(e2s)-sum(is.na(e2s$SYMBOL)) # [1] 25591 # 第二种方式:R包函数 library(clusterProfiler) gene_tr <- bitr(esid, fromType = "ENSEMBL", toType = "SYMBOL", OrgDb = org.Hs.eg.db) nrow(gene_tr) # 25591 identical(e2s$SYMBOL[!is.na(e2s$SYMBOL)],gene_tr$SYMBOL) # [1] TRUE
这样我们就同时拥有了Ensembl ID和Symbol ID:在TCGA矩阵中获取表达量用Emsembl ID,可视化用Symbol ID
# 小鼠基因变大写,然后挑出来存在于e2s的基因 vCAF=toupper(vCAF);vCAF=vCAF[vCAF %in% e2s$SYMBOL] mCAF=toupper(mCAF);mCAF=mCAF[mCAF %in% e2s$SYMBOL] # 得到匹配基因的Ensembl ID(总共38个基因),准备去获取表达量 ng=e2s[match(c(vCAF,mCAF),e2s$SYMBOL),1] mat=a[ng,] mat=mat[,-1] dim(mat) # [1] 38 1217 > mat[1:4,1:4] TCGA-E9-A1NI-01A TCGA-A1-A0SP-01A TCGA-BH-A201-01A TCGA-E2-A14T-01A ENSG00000149564 10.279611 10.059344 10.907642 10.458407 ENSG00000127920 9.776433 9.726218 10.948367 10.496854 ENSG00000131097 5.614710 4.857981 5.930737 6.658211 ENSG00000131055 6.022368 6.129283 6.629357 6.475733
最后就是计算相关性,准备绘制热图
计算相关性就是利用cor()
函数,但是有个问题,它是对行处理还是对列处理?
# 都不用去搜索,自己随便测试一下就能出来结果(新建一个矩阵,然后对它进行默认的相关性分析) > matrix(1:10,nrow = 2) [,1] [,2] [,3] [,4] [,5] [1,] 1 3 5 7 9 [2,] 2 4 6 8 10 > cor(matrix(1:10,nrow = 2)) [,1] [,2] [,3] [,4] [,5] [1,] 1 1 1 1 1 [2,] 1 1 1 1 1 [3,] 1 1 1 1 1 [4,] 1 1 1 1 1 [5,] 1 1 1 1 1 # 很明显,这是对列进行处理
因此,我们如果想看基因之间的相关性,就将上面的mat
矩阵转置一下就可以:
M=cor(t(mat)) colnames(M)=c(vCAF,mCAF) rownames(M)=c(vCAF,mCAF) # 然后为了避免高表达量对许多低表达量的遮盖,我们进行一个标准化处理 n=t(scale(t( M ))) n[n>2]=2 n[n< -2]= -2 pheatmap::pheatmap(n,cluster_rows = F,cluster_cols = F)

典型的相关性热图
补充
在Xena数据库搜索pancreatic
会有5个数据集:
- [GDC TCGA Pancreatic Cancer (PAAD)](https://xenabrowser.net/datapages/?cohort=GDC TCGA Pancreatic Cancer (PAAD)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443) (14 datasets) 60,489 identifiers X 182 samples;log2(count+1) 下载地址:https://gdc.xenahubs.net/download/TCGA-PAAD.htseq_counts.tsv.gz (20M)
- [Pancreatic Cancer (Balagurunathan 2008)](https://xenabrowser.net/datapages/?cohort=Pancreatic Cancer (Balagurunathan 2008)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443) (2 datasets)
- [Pancreatic Cancer (Harada 2008)](https://xenabrowser.net/datapages/?cohort=Pancreatic Cancer (Harada 2008)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443) (2 datasets)
- [Pancreatic Cancer (Jones 2008)](https://xenabrowser.net/datapages/?cohort=Pancreatic Cancer (Jones 2008)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443) (2 datasets)
- [TCGA Pancreatic Cancer (PAAD)](https://xenabrowser.net/datapages/?cohort=TCGA Pancreatic Cancer (PAAD)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443) (25 datasets) 20,531 identifiers X 183 samples;log2(RSEM_norm_count+1) 下载地址:https://tcga.xenahubs.net/download/TCGA.PAAD.sampleMap/HiSeqV2.gz
在Xena数据库搜索lung adenocarcinoma
会有3个数据集:
- [GDC TCGA Lung Adenocarcinoma (LUAD)](https://xenabrowser.net/datapages/?cohort=GDC TCGA Lung Adenocarcinoma (LUAD)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443) (15 datasets) 60,489 identifiers X 585 samples 下载地址:https://gdc.xenahubs.net/download/TCGA-LUAD.htseq_counts.tsv.gz (63.8M)
- [Lung Adenocarcinoma (Ding 2008)](https://xenabrowser.net/datapages/?cohort=Lung Adenocarcinoma (Ding 2008)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443) (2 datasets)
- [TCGA Lung Adenocarcinoma (LUAD)](https://xenabrowser.net/datapages/?cohort=TCGA Lung Adenocarcinoma (LUAD)&removeHub=https%3A%2F%2Fxena.treehouse.gi.ucsc.edu%3A443) (27 datasets) 20,531 identifiers X 576 samples 下载地址:https://tcga.xenahubs.net/download/TCGA.LUAD.sampleMap/HiSeqV2.gz