机器学习-决策树(Decision Tree)案例

背景介绍

这是我最喜欢的算法之一,我经常使用它。它是一种监督学习算法,主要用于分类问题。令人惊讶的是,它适用于分类和连续因变量。在该算法中,我们将总体分成两个或更多个同类集。这是基于最重要的属性/独立变量来完成的,以尽可能地作为不同的组。有关详细信息,请参阅简化决策树:https://www.analyticsvidhya.com/blog/2016/04/complete-tutorial-tree-based-modeling-scratch-in-python/

在上图中,您可以看到人口根据多个属性分为四个不同的组,以识别“他们是否会玩”。为了将人口分成不同的异构群体,它使用各种技术,如基尼,信息增益,卡方,熵。

理解决策树如何工作的最好方法是玩Jezzball–一款来自微软的经典游戏(如下图所示)。基本上,你有一个移动墙壁的房间,你需要创建墙壁,以便最大限度的区域被球清除。

所以,每次你用墙隔开房间时,你都试图在同一个房间里创造2个不同的人口。决策树以非常类似的方式工作,通过将人口分成尽可能不同的群体。

接下来看使用Python Scikit-learn的决策树案例:

import pandas as pd  from sklearn.tree import DecisionTreeClassifier  from sklearn.metrics import accuracy_score    # read the train and test dataset  train_data = pd.read_csv('train-data.csv')  test_data = pd.read_csv('test-data.csv')    # shape of the dataset  print('Shape of training data :',train_data.shape)  print('Shape of testing data :',test_data.shape)    train_x = train_data.drop(columns=['Survived'],axis=1)  train_y = train_data['Survived']    test_x = test_data.drop(columns=['Survived'],axis=1)  test_y = test_data['Survived']  model = DecisionTreeClassifier()  model.fit(train_x,train_y)    # depth of the decision tree  print('Depth of the Decision Tree :', model.get_depth())    # predict the target on the train dataset  predict_train = model.predict(train_x)  print('Target on train data',predict_train)    # Accuray Score on train dataset  accuracy_train = accuracy_score(train_y,predict_train)  print('accuracy_score on train dataset : ', accuracy_train)    # predict the target on the test dataset  predict_test = model.predict(test_x)  print('Target on test data',predict_test)    # Accuracy Score on test dataset  accuracy_test = accuracy_score(test_y,predict_test)  print('accuracy_score on test dataset : ', accuracy_test)

上面代码运行结果:

Shape of training data : (712, 25)  Shape of testing data : (179, 25)  Depth of the Decision Tree : 19  Target on train data [0 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 1 0 0 0   1 0 0 0 1 0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 1 0 01 0 0 0 0 0   0 1 1 0 0 1 0 0 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 0 1 11 0 0 0 0 0   0 0 0 0 1 0 0 1 0 1 0 1 1 0 0 0 1 0 0 1 0 0 0 1 0 1 0 1 0 0 00 1 0 1 1 0   0 0 0 1 1 0 0 1 0 0 1 0 1 1 0 1 1 0 1 1 0 0 0 0 0 0 0 1 0 0 00 0 1 0 0 1   0 1 1 1 1 0 0 1 0 1 0 0 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 1 0 0 00 0 0 0 0 0   0 0 0 0 1 0 0 0 1 0 1 0 0 0 0 1 0 0 0 1 0 1 0 1 0 0 0 1 1 1 01 0 0 0 1 0   0 1 1 0 1 1 1 0 1 1 0 0 1 0 1 1 1 1 1 0 0 1 0 0 0 1 1 0 0 1 10 0 0 0 0 0   0 0 1 1 0 1 1 0 1 0 1 1 1 0 0 0 1 0 1 1 0 0 0 0 1 0 1 1 0 0 00 0 0 0 0 1   1 0 0 1 1 0 1 0 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0 0 1 00 0 1 0 0 0   0 0 0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1 1 0 0 0 0 1 0 0 1 1 1 1 01 1 0 1 1 1   0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 0 0 1 0 0 1 0 0 1 0 1 0 1 1 11 0 0 1 0 0   0 1 0 0 0 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 0 0 0 0 0 0 1 1 10 0 0 0 0 0   0 0 1 1 1 0 0 1 0 1 1 0 1 0 0 0 1 1 1 0 1 0 0 0 0 0 0 0 0 0 00 0 0 1 0 1   1 0 0 0 0 1 0 0 0 1 0 1 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 1 1 1 01 0 1 0 0 1   0 0 0 1 1 0 0 1 0 0 1 0 1 0 0 1 0 0 0 1 0 0 1 1 0 1 0 0 0 0 11 0 1 1 1 0   1 0 1 0 1 1 0 1 0 1 0 0 1 0 0 1 0 1 1 0 1 0 0 0 1 0 1 0 0 0 00 0 0 0 0 1   0 0 0 1 0 1 1 1 1 0 1 1 0 0 1 0 1 0 0 1 0 0 1 1 1 1 0 1 0 0 01 0 1 0 1 0   1 0 0 0 1 0 0 1 0 0 1 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0 00 0 1 0 1 0   1 0 1 1 1 0 0 1 0]  accuracy_score on train dataset :  0.9859550561797753  Target on test data [0 0 0 1 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 01 1 1 1 0 0 1 0 1 1 0 1 1 1 1 0   1 0 0 0 1 0 0 0 1 1 0 1 1 1 0 0 1 1 1 0 1 1 1 0 1 1 1 0 0 0 00 1 0 0 0 0   1 0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 1 0 0 1 0 1 0 1 1 11 0 1 1 0 1   0 1 0 0 0 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 1 1 0 0 0 1 0 1 01 0 0 0 1 0   0 0 0 1 1 0 0 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 1 1 0 1 0 0 0 0 0]  accuracy_score on test dataset :  0.770949720670391