复盘MySQL分页查询优化方案

  • 2020 年 3 月 10 日
  • 筆記

一、前言

MySQL分页查询作为Java面试的一道高频面试题,这里有必要实践一下,毕竟实践出真知。
很多同学在做测试时苦于没有海量数据,官方其实是有一套测试库的。

二、模拟数据

这里模拟数据分2种情况导入,如果只是需要数据测试下,那么推荐官方数据。如果官方数据满足不了需求的话,那么我们自己模拟数据。

1. 导入官方测试库

下载 官方数据库文件 或者在 github 上下载。

该测试库含有6个表。

首先进入 employees_db, 执行导入数据指令

mysql -uroot -proot -t < employees.sql

有些环境可能会报错

ERROR 1193 (HY000) at line 38: Unknown system variable 'storage_engine'

连接mysql查看默认引擎,发现不是本地环境的问题。

mysql> show variables like '%engine%';  +----------------------------------+--------+  | Variable_name                    | Value  |  +----------------------------------+--------+  | default_storage_engine           | InnoDB |  | default_tmp_storage_engine       | InnoDB |  | disabled_storage_engines         |        |  | internal_tmp_disk_storage_engine | InnoDB |  +----------------------------------+--------+  4 rows in set (0.01 sec)

修改 employees.sql 脚本

   set default_storage_engine = InnoDB;  -- set storage_engine = MyISAM;  -- set storage_engine = Falcon;  -- set storage_engine = PBXT;  -- set storage_engine = Maria;    select CONCAT('storage engine: ', @@default_storage_engine) as INFO;

再次执行发现导入成功

➜  employees_db mysql -uroot -proot -t < employees.sql  mysql: [Warning] Using a password on the command line interface can be insecure.  +-----------------------------+  | INFO                        |  +-----------------------------+  | CREATING DATABASE STRUCTURE |  +-----------------------------+  +------------------------+  | INFO                   |  +------------------------+  | storage engine: InnoDB |  +------------------------+  +---------------------+  | INFO                |  +---------------------+  | LOADING departments |  +---------------------+  +-------------------+  | INFO              |  +-------------------+  | LOADING employees |  +-------------------+  +------------------+  | INFO             |  +------------------+  | LOADING dept_emp |  +------------------+  +----------------------+  | INFO                 |  +----------------------+  | LOADING dept_manager |  +----------------------+  +----------------+  | INFO           |  +----------------+  | LOADING titles |  +----------------+  +------------------+  | INFO             |  +------------------+  | LOADING salaries |  +------------------+

验证结果(配置修改同上)

➜  employees_db mysql -uroot -proot -t < test_employees_sha.sql  mysql: [Warning] Using a password on the command line interface can be insecure.  +----------------------+  | INFO                 |  +----------------------+  | TESTING INSTALLATION |  +----------------------+  +--------------+------------------+------------------------------------------+  | table_name   | expected_records | expected_crc                             |  +--------------+------------------+------------------------------------------+  | departments  |                9 | 4b315afa0e35ca6649df897b958345bcb3d2b764 |  | dept_emp     |           331603 | d95ab9fe07df0865f592574b3b33b9c741d9fd1b |  | dept_manager |               24 | 9687a7d6f93ca8847388a42a6d8d93982a841c6c |  | employees    |           300024 | 4d4aa689914d8fd41db7e45c2168e7dcb9697359 |  | salaries     |          2844047 | b5a1785c27d75e33a4173aaa22ccf41ebd7d4a9f |  | titles       |           443308 | d12d5f746b88f07e69b9e36675b6067abb01b60e |  +--------------+------------------+------------------------------------------+

我们可以看到emp大概有33万条数据。

2. 存储过程导入模拟数据

这里我们可以选择存储过程批量导入。

首先创建一张表

drop table if exists `user`;  create table `user`(    `id` int unsigned auto_increment,    `username` varchar(64) not null default '',    `score` int(11) not null default 0,      primary key(`id`)  )ENGINE = InnoDB;

创建存储过程

DROP PROCEDURE IF EXISTS batchInsert;  delimiter $$  -- 声明存储过程结束符号  create procedure batchInsert() -- 创建存储过程  begin   -- 存储过程主体开始      declare num int; -- 声明变量      set num=1; -- 初始值      while num<=3000000 do -- 循环条件          insert into user(`username`,`score`) values(concat('user-', num),num); -- 执行语句          set num=num+1; -- 循环变量自增      end while; -- 结束循环  end$$ -- 存储过程主体结束  delimiter ; #恢复;表示结束    CALL batchInsert; -- 执行存储过程

可以看到测试300W条数据大概1046s插入完成。好吧,本来计划导入1000w的结果时间太长了。

三、常用的MySQL分页查询问题复现及优化。

我们拿现有的表 user 进行测试,该表有 300w 条数据。

1. 前置检查

首先查看下该表结构以及目前存在哪些索引

mysql> desc user;  +----------+------------------+------+-----+---------+----------------+  | Field    | Type             | Null | Key | Default | Extra          |  +----------+------------------+------+-----+---------+----------------+  | id       | int(10) unsigned | NO   | PRI | NULL    | auto_increment |  | username | varchar(30)      | NO   |     |         |                |  | score    | int(11)          | NO   |     | 0       |                |  +----------+------------------+------+-----+---------+----------------+  3 rows in set (0.00 sec)    mysql> show index from user;  +-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+  | Table | Non_unique | Key_name | Seq_in_index | Column_name | Collation | Cardinality | Sub_part | Packed | Null | Index_type | Comment | Index_comment |  +-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+  | user  |          0 | PRIMARY  |            1 | id          | A         |     2991886 |     NULL | NULL   |      | BTREE      |         |               |  +-------+------------+----------+--------------+-------------+-----------+-------------+----------+--------+------+------------+---------+---------------+  1 row in set (0.00 sec)

可以看到只有 id 主键索引。


其次查看是否开启 缓存 (避免查询缓存对执行效率产生影响)

mysql> show variables like '%query_cache%';  +------------------------------+---------+  | Variable_name                | Value   |  +------------------------------+---------+  | have_query_cache             | YES     |  | query_cache_limit            | 1048576 |  | query_cache_min_res_unit     | 4096    |  | query_cache_size             | 1048576 |  | query_cache_type             | OFF     |  | query_cache_wlock_invalidate | OFF     |  +------------------------------+---------+  6 rows in set (0.00 sec)    mysql> show profiles;  Empty set, 1 warning (0.00 sec)

have_query_cachequery_cache_type 说明支持缓存但并未开启。
show profiles 显示为空,说明profiles功能是关闭的。


开启 profiles

mysql> SET profiling = 1;  Query OK, 0 rows affected, 1 warning (0.00 sec)    mysql> show profiles;  +----------+------------+-------------------+  | Query_ID | Duration   | Query             |  +----------+------------+-------------------+  |        1 | 0.00012300 | SET profiling = 1 |  +----------+------------+-------------------+  1 row in set, 1 warning (0.00 sec)

2. 无索引分页查询

一般我们最常用的分页查询的方式为 order by + limit m,n 的方式, 现在我们测试下分页性能

select * from user order by score limit 0,10; -- 10 rows in set (0.65 sec)  select * from user order by score limit 10000,10; -- 10 rows in set (0.83 sec)  select * from user order by score limit 100000,10; -- 10 rows in set (1.03 sec)  select * from user order by score limit 1000000,10; -- 10 rows in set (1.14 sec)

这里我们确认下是否用到了索引

mysql> explain select * from user order by score limit 1000000,10;  +----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+----------------+  | id | select_type | table | partitions | type | possible_keys | key  | key_len | ref  | rows    | filtered | Extra          |  +----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+----------------+  |  1 | SIMPLE      | user  | NULL       | ALL  | NULL          | NULL | NULL    | NULL | 2991995 |   100.00 | Using filesort |  +----+-------------+-------+------------+------+---------------+------+---------+------+---------+----------+----------------+  1 row in set, 1 warning (0.00 sec)

可以看到确实没有用到索引,全表扫描100W数据分页大概需要1.14s的时间。

3. 有索引分页查询

select * from user order by id limit 10000,10; -- 10 rows in set (0.01 sec)  select * from user order by id limit 1000000,10; -- 10 rows in set (0.18 sec)  select * from user order by id limit 2000000,10; -- 10 rows in set (0.35 sec)

该查询用到了主键索引,所以查询效率比较高。
可以看到,当数据量变大时,查询效率明显下降。

这里我们确认下是否使用到了索引

mysql> explain select * from user order by id limit 2000000,10;  +----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------+  | id | select_type | table | partitions | type  | possible_keys | key     | key_len | ref  | rows    | filtered | Extra |  +----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------+  |  1 | SIMPLE      | user  | NULL       | index | NULL          | PRIMARY | 4       | NULL | 2000010 |   100.00 | NULL  |  +----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------+  1 row in set, 1 warning (0.00 sec)

可以看到用了全索引扫描,共查询了2000010行数据。

4. 优化

我们根据MYSQL自带的一种query诊断分析工具查看下sql语句执行各个操作的耗时详情。可以看到查询获取到的2000010条记录都返回给客户端了,耗时主要集中在Sending data阶段。但是客户端只需要10条数据,我们能否只给客户端返回10条数据呢?

mysql> show profiles;  +----------+------------+---------------------------------------------------------+  | Query_ID | Duration   | Query                                                   |  +----------+------------+---------------------------------------------------------+  |        1 | 0.00012300 | SET profiling = 1                                       |  |        2 | 0.00009200 | SET profiling = 1                                       |  |        3 | 0.35689500 | select * from user order by id limit 2000000,10         |  |        4 | 0.00023900 | explain select * from user order by id limit 2000000,10 |  +----------+------------+---------------------------------------------------------+  4 rows in set, 1 warning (0.00 sec)    mysql> show profile for query 3;  +----------------------+----------+  | Status               | Duration |  +----------------------+----------+  | starting             | 0.000071 |  | checking permissions | 0.000007 |  | Opening tables       | 0.000012 |  | init                 | 0.000017 |  | System lock          | 0.000008 |  | optimizing           | 0.000005 |  | statistics           | 0.000024 |  | preparing            | 0.000016 |  | Sorting result       | 0.000004 |  | executing            | 0.000003 |  | Sending data         | 0.356653 |  | end                  | 0.000013 |  | query end            | 0.000005 |  | closing tables       | 0.000008 |  | freeing items        | 0.000019 |  | cleaning up          | 0.000030 |  +----------------------+----------+  16 rows in set, 1 warning (0.00 sec)

网上的优化方案: 子查询 + 覆盖索引

mysql> select * from user where id > (select id from user order by id limit 2000000, 1) limit 10;  +---------+--------------+---------+  | id      | username     | score   |  +---------+--------------+---------+  | 2000002 | user-2000002 | 2000002 |  | 2000003 | user-2000003 | 2000003 |  | 2000004 | user-2000004 | 2000004 |  | 2000005 | user-2000005 | 2000005 |  | 2000006 | user-2000006 | 2000006 |  | 2000007 | user-2000007 | 2000007 |  | 2000008 | user-2000008 | 2000008 |  | 2000009 | user-2000009 | 2000009 |  | 2000010 | user-2000010 | 2000010 |  | 2000011 | user-2000011 | 2000011 |  +---------+--------------+---------+  10 rows in set (0.29 sec)    mysql> explain select * from user where id > (select id from user order by id limit 2000000, 1) limit 10;  +----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------------+  | id | select_type | table | partitions | type  | possible_keys | key     | key_len | ref  | rows    | filtered | Extra       |  +----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------------+  |  1 | PRIMARY     | user  | NULL       | range | PRIMARY       | PRIMARY | 4       | NULL | 1495997 |   100.00 | Using where |  |  2 | SUBQUERY    | user  | NULL       | index | NULL          | PRIMARY | 4       | NULL | 2000001 |   100.00 | Using index |  +----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------------+  2 rows in set, 1 warning (0.30 sec)

然而并没有提升查询性能。没看到问题出在哪里呢?从执行计划可以看出,索引和我们期望是一致的。rows这里检索了很多行。单独看下子查询

mysql> select id from user order by id limit 2000000, 1;  +---------+  | id      |  +---------+  | 2000001 |  +---------+  1 row in set (0.29 sec)    mysql> explain select id from user order by id limit 2000000, 1;  +----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------------+  | id | select_type | table | partitions | type  | possible_keys | key     | key_len | ref  | rows    | filtered | Extra       |  +----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------------+  |  1 | SIMPLE      | user  | NULL       | index | NULL          | PRIMARY | 4       | NULL | 2000001 |   100.00 | Using index |  +----+-------------+-------+------------+-------+---------------+---------+---------+------+---------+----------+-------------+  1 row in set, 1 warning (0.00 sec)

这里可以看出子查询即使走了覆盖索引,依旧消耗3s左右,我觉得这就是正常的索引IO花费的时间。没找到官方测试数据做对比,以及MySQL一次IO查询花费的时间来做对比。

理论上int主键一页可以存储1000个键,根常驻内存,那么B+Tree第二层大概100W个键,测试数据在200W的分页,理论上需要2次IO可以找到数据。2次IO花费的时间是3s的话,1次应该在1.5s左右, 我们查询下99W左右的分页看是否符合假想。

mysql> select id from user order by id limit 990000,1;  +--------+  | id     |  +--------+  | 990001 |  +--------+  1 row in set (0.15 sec)

所以这里笔者大胆的猜想结果是正常开销

四、最后

本来想复盘网上的分页优化方案是否可靠,但是预期结果还是有区别。希望聪明的读者有不同见解的不吝赐教。公众号里有笔者的微信二维码。