­

代码实现三层神经网络的手写字训练及测试

  • 2019 年 10 月 5 日
  • 筆記

本篇使用的原理和计算公式是来自于上一篇:神经元矩阵计算示例

废话不说直接上代码:

import numpy  import scipy.special  import matplotlib.pyplot  class network:      def __init__(self , inputnodes, hiddennodes, outputnodes,learningrate ):          self.inputnodes=inputnodes          self.hiddennodes=hiddennodes          self.outputnodes=outputnodes          self.lr=learningrate          # 计算输入层隐藏层的权重系数          self.wih = numpy.random.normal(0.0, pow(self.hiddennodes, -0.5),(self.hiddennodes, self.inputnodes))          # 计算隐藏层输出层的权重系数          self.who = numpy.random.normal(0.0, pow(self.outputnodes, -0.5),(self.outputnodes, self.hiddennodes))          # 定义激活函数,使用scipy中的expit函数          self.activation_function = lambda x:scipy.special.expit(x)      # 训练神经网络      def train(self, inputs_list, targets_list):          # 将输入转化为2维矩阵          inputs = numpy.array(inputs_list, ndmin=2).T          targets = numpy.array(targets_list, ndmin=2).T          # 计算隐藏层的输入          hidden_inputs = numpy.dot(self.wih, inputs)          # 计算激活函数处理后隐藏层的输入变成输出          hidden_outputs = self.activation_function(hidden_inputs)          # 计算输出层的输入          final_inputs = numpy.dot(self.who, hidden_outputs)          #计算激活函数处理后输出层的输入变成输出          final_outputs = self.activation_function(final_inputs)          output_errors = targets - final_outputs          # 计算输出层隐藏层的误差矩阵          hidden_errors = numpy.dot(self.who.T, output_errors)          # 更新输出层隐藏层的权重          self.who += self.lr * numpy.dot((output_errors *final_outputs * (1.0 - final_outputs)),numpy.transpose(hidden_outputs))          # 更新隐藏层隐藏层的权重          self.wih += self.lr * numpy.dot((hidden_errors *hidden_outputs * (1.0 - hidden_outputs)), numpy.transpose(inputs))          pass              # query the neural network      def query(self,inputs_list):          # 将输入转化为二维矩阵          inputs = numpy.array(inputs_list, ndmin=2).T          # 计算隐藏层的输入          hidden_inputs = numpy.dot(self.wih, inputs)          # 计算激活函数处理后隐藏层的输入变成输出          hidden_outputs = self.activation_function(hidden_inputs)          # 计算输出层的输入          final_inputs = numpy.dot(self.who, hidden_outputs)          # 计算激活函数处理后输出层的输入变成输出          final_outputs = self.activation_function(final_inputs)          return final_outputs          pass    #加载数据进行训练  def train_datas(output_nodes,network):      with open('/home/opprash/Desktop/mnist_train_100.csv', 'r') as f:          data_list = f.readlines()          f.close()      #可视化csv中的数字的意义      # all_values = data_list[1].split(',')      # image_array = numpy.asfarray(all_values[1:]).reshape((28, 28))      # matplotlib.pyplot.imshow(image_array, cmap='Greys', interpolation='None')      # matplotlib.pyplot.show()      # scaled_input = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01      # print(scaled_input)        # 训练神经网络      # 遍历训练集的所有数据      for record in data_list:          # 以逗号分割          all_values = record.split(',')          # 将数据压缩到0到1之间,原始数据是在0-255之间          inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01          # 创建目标输出值(全部0.01,除了所需的值标签是0.99)          targets = numpy.zeros(output_nodes) + 0.01          # all_values[0] 是此记录的目标标签          targets[int(all_values[0])] = 0.99          network.train(inputs, targets)          pass    #加载数据进行测试  def test_data(network):      with open('/home/opprash/Desktop/mnist_test_10.csv', 'r') as f:          data_list = f.readlines()          f.close()      scorecard = []      for record in data_list:          # 以逗号分割          all_values = record.split(',')          # 正确答案是第一个值          correct_label = int(all_values[0])          print( "真实的标签",correct_label)          # 将数据压缩到0到1之间,原始数据是在0-255之间          inputs = (numpy.asfarray(all_values[1:]) / 255.0 * 0.99) + 0.01          # 使用网络进行查询          outputs = network.query(inputs)          # 最高值的索引就是对应的标签          label = numpy.argmax(outputs)          print("神经网络预测的答案:",label)          # 追加正确或者不正确的list          if (label == correct_label):          # 网络的答案匹配正确的答案,添加1              scorecard.append(1)          else:          # 网络的答案匹配不正确的答案,添加0              scorecard.append(0)          scorecard_array = numpy.asarray(scorecard)      print("准确率 = ", scorecard_array.sum()/scorecard_array.size)    if __name__ == '__main__':      # 定义输入,隐藏层,输出层节点个数      input_nodes = 784      hidden_nodes = 100      output_nodes = 10      # 学习率 0.3      learning_rate = 0.3      # 实例化神经网络      n = network(input_nodes,hidden_nodes,output_nodes,learning_rate)      train_datas(output_nodes,n)      test_data(n)  

运行结果:

运行结果