关于入门深度学习mnist数据集前向计算的记录
import os
import lr as lr
import tensorflow as tf
from pyspark.sql.functions import stddev
from tensorflow.keras import datasets
os.environ['TF_CPP_MIN_LOG_LEVEL']='2' #只打印error的信息
(x,y),_=datasets.mnist.load_data()
#x: [60k,28,28]
#y: [60k]
x=tf.convert_to_tensor(x,dtype=tf.float32)/255 #使x的值从0~255降到0~1
y=tf.convert_to_tensor(y,dtype=tf.int32)
print(x.shape,y.shape,x.dtype,y.dtype)
print(tf.reduce_min(x),tf.reduce_max(x))
print(tf.reduce_min(y),tf.reduce_max(y))
train_db=tf.data.Dataset.from_tensor_slices((x,y)).batch(100) #每次从60k中取100张
train_iter=iter(train_db) #迭代器
sample=next(train_iter)
print('batch:',sample[0].shape,sample[1].shape)
#[b,784]=>[b,256]=>[b,128]=>[b,10]
#[dim_in,dim_out],[dim_out]
w1=tf.Variable(tf.random.truncated_normal([784,256],stddev=0.1)) #防止梯度爆炸,需要设定均值和方差的范围,原来是均值为0,方差为1,现在设置方差为0.1
b1=tf.Variable(tf.zeros([256]))
w2=tf.Variable(tf.random.truncated_normal([256,128],stddev=0.1))
b2=tf.Variable(tf.zeros([128]))
w3=tf.Variable(tf.random.truncated_normal([128,10],stddev=0.1))
b3=tf.Variable(tf.zeros([10]))
#h1=x@w1+b1 x指的是之前的一个batch,100个28*28的图片
for epoch in range(10): #对整个数据集进行10次迭代
for step,(x,y) in enumerate(train_db): # x:[100,28,28] y:[100] 对每个batch进行,整体进度
x=tf.reshape(x,[-1,28*28]) #[b,28,28]=>[b,28*28] 维度变换
with tf.GradientTape() as tape: #tf.Variable
h1 = x @ w1 + b1 # [b,784]@[784,256]+[256]=>[b,256]
h1 = tf.nn.relu(h1) # 加入非线性因素
h2 = h1 @ w2 + b2 # [b,256]@[256,128]+[128]=>[b,128]
h2 = tf.nn.relu(h2)
out = h2 @ w3 + b3 # [b,128]@[128,10]+[10]=>[b,10] 前项计算结束
# compute loss
# out:[b,10]
# y:[b]=>[b,10]
y_onehot = tf.one_hot(y, depth=10) #将y one_hot编码为长度为10的一维数组,好与x*w+b的[b,10]进行相减误差运算
# mes=mean(sum(y_onehot-out)^2)
loss = tf.square(y_onehot - out)
# mean:scalar
loss = tf.reduce_mean(loss) #求均值,就是计算100张图片的平均误差
#compute gradient
grads=tape.gradient(loss,[w1,b1,w2,b2,w3,b3]) #loss函数中队w1,b1,w2,b2,w3,b3求导
# print(grads)
#w1=w1-lr*w1_grad 求下一个w1,梯度下降算法
# w1 = w1 - lr * grads[0] #tf.Variable相减之后还是tf.tensor,需要原地更新
# b1 = b1 - lr * grads[1]
# w2 = w2 - lr * grads[2]
# b2 = b2 - lr * grads[3]
# w3 = w3 - lr * grads[4]
# b3 = b3 - lr * grads[5]
lr = 1e-3 #0.001
w1.assign_sub(lr * grads[0])
b1.assign_sub(lr * grads[1])
w2.assign_sub(lr * grads[2])
b2.assign_sub(lr * grads[3])
w3.assign_sub(lr * grads[4])
b3.assign_sub(lr * grads[5])
# print(isinstance(b3, tf.Variable))
# print(isinstance(b3, tf.Tensor))
if step%100==0: #每进行100个batch输出一次
print(epoch,step,loss,float(loss))
#本次学习也算是继续理解线性回归模型,mnist图像识别的学习,收获还是很不错的,不过还有一些知识希望在之后的学习中进行计算理解。还挺开心的学这个东西,挺有意思的哈哈。