­

Moore-Penrose伪逆

  • 2019 年 10 月 5 日
  • 筆記

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

本文链接:https://blog.csdn.net/weixin_36670529/article/details/100597077

对于非方阵矩阵而言,其逆矩阵没有定义。假设在下面的问题中。我们希望通过矩阵A的左逆B来求解线性方程:

等式两边左乘左逆B后,我们得到

取决于问题的形式,我们可能无法设计一个唯一的映射A映射到B。

如果矩阵A的行数大于列数,那么上述方程可能没有解。如果矩阵A的行数小于列数,那么上述矩阵可能有多个解。

Moore-Penrose伪逆(Moore-Penrose pseudoinverse)使我们在这类问题上取得了一定进展。矩阵A的伪逆定义为:

计算伪逆的实际算法没有基于这个定义,而是使用下面的公式:

其中,矩阵U、D和V是矩阵A奇异值分解后得到的矩阵。对角矩阵D的伪逆

是其非零元素取倒数之后再转置得到的。当矩阵A的列数多于行数时,使用伪逆求解线性方程组是众多可能解法中的一种。特别地,

是方程所有可行解中欧几里得范数

最小的一个。当矩阵A的函数多于列数时,可能没有解。在这种情况下,通过伪逆得到的x使得Ax和y的欧几里得距离

最小。