【Java】Map总结和源码注释

前言

Map为一个Java中一个重要的数据结构,主要表示<key, value>的映射关系对。本文包括了相关Map数据结构的总结和源码的阅读注释。

HashMap

初始化,可以选择第二个初始化函数来设置装载能力threshold和装载系数loadFactor

  • HashMap()
  • HashMap(int initialCapacity, float loadFactor)

HashMap中定义的一些常量:

  • static final int DEFAULT_INITIAL_CAPACITY = 1 << 4;

    缺省的初始大小

  • static final int MAXIMUM_CAPACITY = 1 << 30;

    最大限定大小,当超过这个值时,会resize()Integer.MAX_VALUE

  • static final float DEFAULT_LOAD_FACTOR = 0.75f;

    threshold = capacity*laodFactor

HashMap的大小始终为2的倍数,若插入时超过threshold时,会调用resize()来自动将大小扩大一倍。

值在Node<K,V>[] table中的定位方式为(n-1)&hash(key)这也是resize的时候直接double的原因

基本方法:

  • V put(K key, V value):若key不存在,则插入;若key存在,则更新value值,返回旧的value
  • V putIfAbsent(K key, V value)
  • V get(Object key):get不存在的key时会返回null,需要注意NullPointerException
  • int size()

遍历方式

  • forEach(lambda)通过lambda表达式进行遍历

  • entrySet().iterator()

    Iterator iter = map.entrySet().iterator();  while(iter.hasNext()){    Map.Entry e = (Map.Entry)iter.next();      key = e.getKey();      value = e.getValue();  }
  • keySet().iterator()

    Iterator iter = map.keySet().iterator();  while(iter.hasNext()){      key = iter.next();      value = map.get(key);  }
  • values().iterator()

resize()

final Node<K,V>[] resize() {      Node<K,V>[] oldTab = table;      int oldCap = (oldTab == null) ? 0 : oldTab.length;      int oldThr = threshold;      int newCap, newThr = 0;      if (oldCap > 0) {          if (oldCap >= MAXIMUM_CAPACITY) { // 旧的大小已经达到设置的最大值时不再增加,改变阈值              threshold = Integer.MAX_VALUE;              return oldTab;          }          else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY && // 新大小=旧大小*2                   oldCap >= DEFAULT_INITIAL_CAPACITY)              newThr = oldThr << 1; // 阈值也一起*2      }      else if (oldThr > 0) // initial capacity was placed in threshold          newCap = oldThr;      else {               // oldCap为0时处于初始化阶段,进行初始化          newCap = DEFAULT_INITIAL_CAPACITY;          newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY);      }      if (newThr == 0) {          float ft = (float)newCap * loadFactor;          newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?                    (int)ft : Integer.MAX_VALUE);      }      threshold = newThr;      @SuppressWarnings({"rawtypes","unchecked"})      Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];      table = newTab;      if (oldTab != null) { // 将旧map移到新map中          for (int j = 0; j < oldCap; ++j) {              Node<K,V> e;              if ((e = oldTab[j]) != null) {                  oldTab[j] = null; // 置为null值方便GC                  if (e.next == null) // 桶中没有链,直接赋值                      newTab[e.hash & (newCap - 1)] = e;                  else if (e instanceof TreeNode) // 如果桶中为红黑树                      ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);                  else { // preserve order                      Node<K,V> loHead = null, loTail = null;                      Node<K,V> hiHead = null, hiTail = null;                      Node<K,V> next;                      do {                          next = e.next;                          if ((e.hash & oldCap) == 0) { // 若为真,则在原来位置不变                              if (loTail == null)                                  loHead = e;                              else                                  loTail.next = e;                              loTail = e;                          }                          else {  // 为假时说明扩容后原链表中的节点位置发生了改变                              if (hiTail == null)                                  hiHead = e;                              else                                  hiTail.next = e;                              hiTail = e;                          }                      } while ((e = next) != null);                      if (loTail != null) {                          loTail.next = null;                          newTab[j] = loHead; // 原链表所在                      }                      if (hiTail != null) {                          hiTail.next = null;                          newTab[j + oldCap] = hiHead; // 扩容部分节点位置加上了oldCap                      }                  }              }          }      }      return newTab;  }

冲突解决

final V putVal(int hash, K key, V value, boolean onlyIfAbsent,                 boolean evict) {      Node<K,V>[] tab; Node<K,V> p; int n, i;      if ((tab = table) == null || (n = tab.length) == 0)          n = (tab = resize()).length; // 数组为空的情况      if ((p = tab[i = (n - 1) & hash]) == null)          tab[i] = newNode(hash, key, value, null); // 没有冲突直接放入      else {          Node<K,V> e; K k;          if (p.hash == hash &&              ((k = p.key) == key || (key != null && key.equals(k))))              e = p;  // 有冲突但是key相同,则覆盖原来的值          else if (p instanceof TreeNode)              e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value); // 如果已经拉成红黑树则插入树中          else {              for (int binCount = 0; ; ++binCount) {                  if ((e = p.next) == null) {                      p.next = newNode(hash, key, value, null); // 找到链表尾插入链表中                      if (binCount >= TREEIFY_THRESHOLD - 1) // 如果桶的链长度超过阈值则拉成红黑树                          treeifyBin(tab, hash);                      break;                  }                  if (e.hash == hash &&                      ((k = e.key) == key || (key != null && key.equals(k))))                      break; // 在链中找到相同的key则覆盖其值                  p = e;              }          }          if (e != null) { // existing mapping for key              V oldValue = e.value;              if (!onlyIfAbsent || oldValue == null)                  e.value = value;              afterNodeAccess(e);              return oldValue;          }      }      ++modCount;      if (++size > threshold)          resize();      afterNodeInsertion(evict);      return null;  }

Hashtable

初始化函数:

public Hashtable() {      this(11, 0.75f);  }

默认下initialCapacity = 11loadFactor = 0.75

插入操作put(K,V)

public synchronized V put(K key, V value) {      // Make sure the value is not null      if (value == null) {          throw new NullPointerException();      }        // Makes sure the key is not already in the hashtable.      Entry<?,?> tab[] = table;      int hash = key.hashCode();      int index = (hash & 0x7FFFFFFF) % tab.length;      @SuppressWarnings("unchecked")      Entry<K,V> entry = (Entry<K,V>)tab[index];      for(; entry != null ; entry = entry.next) {          if ((entry.hash == hash) && entry.key.equals(key)) { // 找到相同的key则覆盖原值              V old = entry.value;              entry.value = value;              return old;          }      }        addEntry(hash, key, value, index);      return null;  }

Hashtable的hash寻址方法为(hash & 0x7FFFFFFF) % tab.length,当插入的key之前有值时返回旧值,否则返回null。

addEntry(hash, key, value, index),当table的大小不够时,执行rehash()扩大table

private void addEntry(int hash, K key, V value, int index) {      Entry<?,?> tab[] = table;      if (count >= threshold) {          // Rehash the table if the threshold is exceeded          rehash();            tab = table;          hash = key.hashCode();          index = (hash & 0x7FFFFFFF) % tab.length;      }        // Creates the new entry.      @SuppressWarnings("unchecked")      Entry<K,V> e = (Entry<K,V>) tab[index];      tab[index] = new Entry<>(hash, key, value, e);      count++;      modCount++;  }

rehash():

protected void rehash() {      int oldCapacity = table.length;      Entry<?,?>[] oldMap = table;        // overflow-conscious code      int newCapacity = (oldCapacity << 1) + 1; // 新大小=原大小*2+1      if (newCapacity - MAX_ARRAY_SIZE > 0) {          if (oldCapacity == MAX_ARRAY_SIZE)              // Keep running with MAX_ARRAY_SIZE buckets              return;          newCapacity = MAX_ARRAY_SIZE;      }      Entry<?,?>[] newMap = new Entry<?,?>[newCapacity];        modCount++;      threshold = (int)Math.min(newCapacity * loadFactor, MAX_ARRAY_SIZE + 1); // 更新阈值      table = newMap;        for (int i = oldCapacity ; i-- > 0 ;) { // 将旧map中的值一道新map          for (Entry<K,V> old = (Entry<K,V>)oldMap[i] ; old != null ; ) {              Entry<K,V> e = old;              old = old.next;                int index = (e.hash & 0x7FFFFFFF) % newCapacity;              e.next = (Entry<K,V>)newMap[index];              newMap[index] = e;          }      }  }

与HashMap的区别

  • HashMap 继承自AbstractMap类,Hashtable继承自Dictionary类

  • Hashtable中的方法均用sychronized关键字修饰,为线程安全
  • 扩容方法不同,HashMap直接double,使得大小始终是2的倍数,Hashtable在double后加1
  • 在table中的查找方式不同:HashMap为hash&(n-1),Hashtable为(hash & 0x7FFFFFFF) % tab.length

TreeMap

TreeMap的本质是红黑树,红黑树是一种特殊的二叉查找树,所以TreeMap中的节点都是有序的。

TreeMap中节点Entry的定义为

static final class Entry<K,V> implements Map.Entry<K,V> {      K key;      V value;      Entry<K,V> left;      Entry<K,V> right;      Entry<K,V> parent;      boolean color = BLACK;  }

初始化函数:

public TreeMap() {      comparator = null;  }  public TreeMap(Comparator<? super K> comparator) {      this.comparator = comparator;  }

TreeMap支持自定义的比较器,若是使用空初始化函数,则默认为key的自然顺序

 /**       * The comparator used to maintain order in this tree map, or       * null if it uses the natural ordering of its keys.       *       * @serial       */  private final Comparator<? super K> comparator;

插入操作put(K,V)

public V put(K key, V value) {      Entry<K,V> t = root;      if (t == null) { // root为空则直接new          compare(key, key); // type (and possibly null) check            root = new Entry<>(key, value, null);          size = 1;          modCount++;          return null;      }      int cmp;      Entry<K,V> parent;      // split comparator and comparable paths      Comparator<? super K> cpr = comparator;      if (cpr != null) { // 自定义comparator时          do {              parent = t;              cmp = cpr.compare(key, t.key);              if (cmp < 0)                  t = t.left;              else if (cmp > 0)                  t = t.right;              else                  return t.setValue(value);   // 如果key相等则直接覆盖value          } while (t != null);      }      else {  // 使用key的comparable接口          if (key == null)              throw new NullPointerException();          @SuppressWarnings("unchecked")          Comparable<? super K> k = (Comparable<? super K>) key;          do {              parent = t;              cmp = k.compareTo(t.key);              if (cmp < 0)                  t = t.left;              else if (cmp > 0)                  t = t.right;              else                  return t.setValue(value); //找到相同的key则直接覆盖value返回          } while (t != null);      }      Entry<K,V> e = new Entry<>(key, value, parent); // 插入节点      if (cmp < 0)          parent.left = e;      else          parent.right = e;      fixAfterInsertion(e); // 红黑树自平衡过程      size++;      modCount++;      return null;  }

插入后红黑树的自平衡过程:

private void fixAfterInsertion(Entry<K,V> x) {      x.color = RED; // 设插入节点的颜色为红        while (x != null && x != root && x.parent.color == RED) { // 当x.parent为黑时树已经平衡          if (parentOf(x) == leftOf(parentOf(parentOf(x)))) { // x.parent是祖父节点的左子节点              Entry<K,V> y = rightOf(parentOf(parentOf(x))); // x的uncle节点              if (colorOf(y) == RED) { // uncle为红的时候recolor                  setColor(parentOf(x), BLACK);                  setColor(y, BLACK);                  setColor(parentOf(parentOf(x)), RED);                  x = parentOf(parentOf(x)); // 向上变色直到满足平衡条件              } else { // uncle为黑的时候则需要rotate                  if (x == rightOf(parentOf(x))) { // 左右的情况,向左旋转                      x = parentOf(x);                      rotateLeft(x);                  }                  setColor(parentOf(x), BLACK);                  setColor(parentOf(parentOf(x)), RED);                  rotateRight(parentOf(parentOf(x)));              }          } else {              Entry<K,V> y = leftOf(parentOf(parentOf(x)));              if (colorOf(y) == RED) {                  setColor(parentOf(x), BLACK);                  setColor(y, BLACK);                  setColor(parentOf(parentOf(x)), RED);                  x = parentOf(parentOf(x));              } else {                  if (x == leftOf(parentOf(x))) { // 右左的情况,向右旋转                      x = parentOf(x);                      rotateRight(x);                  }                  setColor(parentOf(x), BLACK);                  setColor(parentOf(parentOf(x)), RED);                  rotateLeft(parentOf(parentOf(x)));              }          }      }      root.color = BLACK;  }

如有不对请多指正?