用Pytorch自建6层神经网络训练Fashion-MNIST数据集,测试准确率达到 92%

  • 2019 年 10 月 4 日
  • 筆記

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。

本文链接:https://blog.csdn.net/briblue/article/details/100693365

一般的深度学习入门例子是 MNIST 的训练和测试,几乎就算是深度学习领域的 HELLO WORLD 了,但是,有一个问题是,MNIST 太简单了,初学者闭着眼镜随便构造几层网络就可以将准确率提升到 90% 以上。但是,初学者这算入门了吗?

答案是没有。

现实开发当中的例子可没有这么简单,如果让初学者直接去上手 VOC 或者是 COCO 这样的数据集,很可能自己搭建的神经网络准确率不超过 30%。

是的,如果不用开源的 VGG、GooLeNet、ResNet 等等,也许你手下敲出的代码命中率还没有瞎猜高。

这篇文章介绍如何用 Pytorch 训练一个自建的神经网络去训练 Fashion-MNIST 数据集。

Fashion-MNIST

Fashion-MINST 的目的是为了替代 MNIST。

这是它的地址:https://github.com/zalandoresearch/fashion-mnist

它是一系列的服装图片集合,总共有 10 个类别。

60000 张训练图片,10000 张测试图片。

Label

Description

0

T-shirt/top

1

Trouser

2

Pullover

3

Dress

4

Coat

5

Sandal

6

Shirt

7

Sneaker

8

Bag

9

Ankle boo

Fashion-MNIST 体积并不大,更方便的是像 Tensorflow 和 Pytorch 目前的版本都可以直接用代码下载。

训练神经网络的步骤

下面我张图是我自己制作的,每次要写相关博客时,我都会翻出来温习一下。

它会提醒我要做这些事情:

  1. 处理数据
  2. 搭建模型
  3. 确定 Loss 函数
  4. 训练

下面文章就按这样的步骤来讲解

处理数据

下载数据

Pytorch 现在通过现成的 API 就可以下载 Fashion-MINST 的数据

trainset = torchvision.datasets.FashionMNIST(root='./data', train=True,                                          download=True, transform=transform)  trainloader = torch.utils.data.DataLoader(trainset, batch_size=100,                                            shuffle=True, num_workers=2)    testset = torchvision.datasets.FashionMNIST(root='./data', train=False,                                         download=True, transform=transform1)  testloader = torch.utils.data.DataLoader(testset, batch_size=50,                                           shuffle=False, num_workers=2)

上面创建了两个 DataLoader ,分别用来加载训练集的图片和测试集的图片。

代码运行后,会在当前目录的 data 目录下存放对应的文件。

数据增强

为提高模型的泛化能力,一般会将数据进行增强操作。

transform = transforms.Compose(      [       transforms.RandomHorizontalFlip(),       transforms.RandomGrayscale(),       transforms.ToTensor()])    transform1 = transforms.Compose(      [       transforms.ToTensor()])

transform 主要进行了左右翻转,灰度随机变换,用来给训练的图像进行数据加强,测试的图片就不需要了。

transform 的引用传递到前面的数据集对应的 API 就可以了,非常方便。

搭建模型

虽然是自己搭建的神经网络,但是却参考了 VGG 的网络架构。

总共 6 层网络,4 层卷积层,2 层全连接。

用 Pytorch 实现起来也非常方便。

class Net(nn.Module):          def __init__(self):          super(Net,self).__init__()          self.conv1 = nn.Conv2d(1,64,1,padding=1)          self.conv2 = nn.Conv2d(64,64,3,padding=1)          self.pool1 = nn.MaxPool2d(2, 2)          self.bn1 = nn.BatchNorm2d(64)          self.relu1 = nn.ReLU()            self.conv3 = nn.Conv2d(64,128,3,padding=1)          self.conv4 = nn.Conv2d(128, 128, 3,padding=1)          self.pool2 = nn.MaxPool2d(2, 2, padding=1)          self.bn2 = nn.BatchNorm2d(128)          self.relu2 = nn.ReLU()            self.fc5 = nn.Linear(128*8*8,512)          self.drop1 = nn.Dropout2d()          self.fc6 = nn.Linear(512,10)          def forward(self,x):          x = self.conv1(x)          x = self.conv2(x)          x = self.pool1(x)          x = self.bn1(x)          x = self.relu1(x)              x = self.conv3(x)          x = self.conv4(x)          x = self.pool2(x)          x = self.bn2(x)          x = self.relu2(x)            #print(" x shape ",x.size())          x = x.view(-1,128*8*8)          x = F.relu(self.fc5(x))          x = self.drop1(x)          x = self.fc6(x)            return x

值得注意的是,在卷积层后我使用了 Batch Norm 的手段,在全连接层我使用了 Dropout,两者的目的都是为了降低过拟合的现象。

制定训练策略

我选用了比较流行的 Adam 作为优化有段,学习率 是 0.0001。

然后,loss 选用 交叉熵。

    def train_sgd(self,device,epochs=100):          optimizer = optim.Adam(self.parameters(), lr=0.0001)            path = 'weights.tar'          initepoch = 0            if os.path.exists(path) is not True:              loss = nn.CrossEntropyLoss()              # optimizer = optim.SGD(self.parameters(),lr=0.01)            else:              checkpoint = torch.load(path)              self.load_state_dict(checkpoint['model_state_dict'])              optimizer.load_state_dict(checkpoint['optimizer_state_dict'])              initepoch = checkpoint['epoch']              loss = checkpoint['loss']              for epoch in range(initepoch,epochs):  # loop over the dataset multiple times              timestart = time.time()                running_loss = 0.0              total = 0              correct = 0              for i, data in enumerate(trainloader, 0):                  # get the inputs                  inputs, labels = data                  inputs, labels = inputs.to(device),labels.to(device)                    # zero the parameter gradients                  optimizer.zero_grad()                    # forward + backward + optimize                  outputs = self(inputs)                  l = loss(outputs, labels)                  l.backward()                  optimizer.step()                    # print statistics                  running_loss += l.item()                  # print("i ",i)                  if i % 500 == 499:  # print every 500 mini-batches                      print('[%d, %5d] loss: %.4f' %                            (epoch, i, running_loss / 500))                      running_loss = 0.0                      _, predicted = torch.max(outputs.data, 1)                      total += labels.size(0)                      correct += (predicted == labels).sum().item()                      print('Accuracy of the network on the %d tran images: %.3f %%' % (total,                              100.0 * correct / total))                      total = 0                      correct = 0                      torch.save({'epoch':epoch,                                  'model_state_dict':net.state_dict(),                                  'optimizer_state_dict':optimizer.state_dict(),                                  'loss':loss                                  },path)                print('epoch %d cost %3f sec' %(epoch,time.time()-timestart))            print('Finished Training')

上面这段代码中也有保存和加载模型的功能。

通过 save() 可以保存网络训练状态。

torch.save({'epoch':epoch,               'model_state_dict':net.state_dict(),               'optimizer_state_dict':optimizer.state_dict(),               'loss':loss               },path)

我在代码中定义了 path 为 weights.tar,任务执行时,模型数据也会保存下来。 通过load() 可以加载保存的模型数据。

checkpoint = torch.load(path)              self.load_state_dict(checkpoint['model_state_dict'])              optimizer.load_state_dict(checkpoint['optimizer_state_dict'])              initepoch = checkpoint['epoch']              loss = checkpoint['loss']

测试

测试和训练有些不同,它只需要前向推导就好了。

    def test(self,device):          correct = 0          total = 0          with torch.no_grad():              for data in testloader:                  images, labels = data                  images, labels = images.to(device), labels.to(device)                  outputs = self(images)                  _, predicted = torch.max(outputs.data, 1)                  total += labels.size(0)                  correct += (predicted == labels).sum().item()            print('Accuracy of the network on the 10000 test images: %.3f %%' % (                  100.0 * correct / total))

训练结果

下面编写代码进行训练和验证。

if __name__ == "__main__":        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")      net = Net()      net = net.to(device)      net.train_sgd(device,30)      net.test(device)

代码会根据机器有没有 cuda 设备来决定用什么训练,比如机器没有安装 GPU,那么就会用 CPU 执行,速度会稍慢一点。

因为模型简单,我选择了训练 30 个 epoch 就终止。

最后,就可以运行代码了。

我的 Pytorch 版本是 1.2,Cuda 版本是 10.1,GPU 是 1080 Ti.

跑一个 epoch 的时间大概花费 6 秒多。

经过 30 个 epoch 之后,训练准确度可以达到 99%,测试准确率可以为 92.29%.

[0,   499] loss: 0.4572  Accuracy of the network on the 100 tran images: 87.000 %  epoch 0 cost 7.158301 sec  [1,   499] loss: 0.2840  Accuracy of the network on the 100 tran images: 90.000 %  epoch 1 cost 6.451613 sec  [2,   499] loss: 0.2458  Accuracy of the network on the 100 tran images: 95.000 %  epoch 2 cost 6.450977 sec  [3,   499] loss: 0.2197  Accuracy of the network on the 100 tran images: 92.000 %  epoch 3 cost 6.383819 sec  [4,   499] loss: 0.2009  Accuracy of the network on the 100 tran images: 90.000 %  epoch 4 cost 6.443048 sec  [5,   499] loss: 0.1840  Accuracy of the network on the 100 tran images: 94.000 %  epoch 5 cost 6.411542 sec  [6,   499] loss: 0.1688  Accuracy of the network on the 100 tran images: 94.000 %  epoch 6 cost 6.420368 sec  [7,   499] loss: 0.1584  Accuracy of the network on the 100 tran images: 93.000 %  epoch 7 cost 6.390420 sec  [8,   499] loss: 0.1452  Accuracy of the network on the 100 tran images: 93.000 %  epoch 8 cost 6.473319 sec  [9,   499] loss: 0.1342  Accuracy of the network on the 100 tran images: 96.000 %  epoch 9 cost 6.435586 sec  [10,   499] loss: 0.1275  Accuracy of the network on the 100 tran images: 95.000 %  epoch 10 cost 6.422722 sec  [11,   499] loss: 0.1177  Accuracy of the network on the 100 tran images: 96.000 %  epoch 11 cost 6.490834 sec  [12,   499] loss: 0.1085  Accuracy of the network on the 100 tran images: 96.000 %  epoch 12 cost 6.499629 sec  [13,   499] loss: 0.1021  Accuracy of the network on the 100 tran images: 92.000 %  epoch 13 cost 6.512994 sec  [14,   499] loss: 0.0929  Accuracy of the network on the 100 tran images: 96.000 %  epoch 14 cost 6.510045 sec  [15,   499] loss: 0.0871  Accuracy of the network on the 100 tran images: 94.000 %  epoch 15 cost 6.422577 sec  [16,   499] loss: 0.0824  Accuracy of the network on the 100 tran images: 98.000 %  epoch 16 cost 6.577342 sec  [17,   499] loss: 0.0749  Accuracy of the network on the 100 tran images: 97.000 %  epoch 17 cost 6.491562 sec  [18,   499] loss: 0.0702  Accuracy of the network on the 100 tran images: 99.000 %  epoch 18 cost 6.430238 sec  [19,   499] loss: 0.0634  Accuracy of the network on the 100 tran images: 98.000 %  epoch 19 cost 6.540339 sec  [20,   499] loss: 0.0631  Accuracy of the network on the 100 tran images: 97.000 %  epoch 20 cost 6.490717 sec  [21,   499] loss: 0.0545  Accuracy of the network on the 100 tran images: 98.000 %  epoch 21 cost 6.583902 sec  [22,   499] loss: 0.0535  Accuracy of the network on the 100 tran images: 98.000 %  epoch 22 cost 6.423389 sec  [23,   499] loss: 0.0491  Accuracy of the network on the 100 tran images: 99.000 %  epoch 23 cost 6.573753 sec  [24,   499] loss: 0.0474  Accuracy of the network on the 100 tran images: 95.000 %  epoch 24 cost 6.577250 sec  [25,   499] loss: 0.0422  Accuracy of the network on the 100 tran images: 98.000 %  epoch 25 cost 6.587380 sec  [26,   499] loss: 0.0416  Accuracy of the network on the 100 tran images: 98.000 %  epoch 26 cost 6.595343 sec  [27,   499] loss: 0.0402  Accuracy of the network on the 100 tran images: 99.000 %  epoch 27 cost 6.748190 sec  [28,   499] loss: 0.0366  Accuracy of the network on the 100 tran images: 99.000 %  epoch 28 cost 6.554550 sec  [29,   499] loss: 0.0327  Accuracy of the network on the 100 tran images: 97.000 %  epoch 29 cost 6.475854 sec  Finished Training  Accuracy of the network on the 10000 test images: 92.290 %

92% 是什么水平呢?在之前给出的 Fashion-MNIST 给出的地址中是可以在 benchmark 排上名的。

网站显示 Fashion-MNIST 测试的最高分数是 96.7%,说明我这个模型是可以优化和努力的。

后续优化

  1. 因为模型是我随便搭建的,只是吸收了比较先进的手段而已,后续可以在这个基础上尝试更多的层数,更少的参数。
  2. 耐心的调参,学习率是我随便给的,是否合理没有验证。
  3. ResNet 做图像识别时,威力比较大,可以尝试在神经网络中引入残差单元。
  4. 可视化,也许很多新手会比较没谱,自己训练的东西是什么,那么你可以自己尝试把一些中间结果显示出来。

完整代码:

import torch  import torch.nn as nn  import torch.nn.functional as F  import torchvision  import torchvision.transforms as transforms  import torch.optim as optim  import time  import os    transform = transforms.Compose(      [       transforms.RandomHorizontalFlip(),       transforms.RandomGrayscale(),       transforms.ToTensor()])    transform1 = transforms.Compose(      [       transforms.ToTensor()])    trainset = torchvision.datasets.FashionMNIST(root='./data', train=True,                                          download=True, transform=transform)  trainloader = torch.utils.data.DataLoader(trainset, batch_size=100,                                            shuffle=True, num_workers=2)    testset = torchvision.datasets.FashionMNIST(root='./data', train=False,                                         download=True, transform=transform1)  testloader = torch.utils.data.DataLoader(testset, batch_size=50,                                           shuffle=False, num_workers=2)    classes = ('T-shirt', 'Trouser', 'Pullover', 'Dress',             'Coat', 'Sandal', 'Shirt', 'Sneaker', 'Bag', 'Ankle boot')      class Net(nn.Module):          def __init__(self):          super(Net,self).__init__()          self.conv1 = nn.Conv2d(1,64,1,padding=1)          self.conv2 = nn.Conv2d(64,64,3,padding=1)          self.pool1 = nn.MaxPool2d(2, 2)          self.bn1 = nn.BatchNorm2d(64)          self.relu1 = nn.ReLU()            self.conv3 = nn.Conv2d(64,128,3,padding=1)          self.conv4 = nn.Conv2d(128, 128, 3,padding=1)          self.pool2 = nn.MaxPool2d(2, 2, padding=1)          self.bn2 = nn.BatchNorm2d(128)          self.relu2 = nn.ReLU()            self.fc5 = nn.Linear(128*8*8,512)          self.drop1 = nn.Dropout2d()          self.fc6 = nn.Linear(512,10)          def forward(self,x):          x = self.conv1(x)          x = self.conv2(x)          x = self.pool1(x)          x = self.bn1(x)          x = self.relu1(x)              x = self.conv3(x)          x = self.conv4(x)          x = self.pool2(x)          x = self.bn2(x)          x = self.relu2(x)            #print(" x shape ",x.size())          x = x.view(-1,128*8*8)          x = F.relu(self.fc5(x))          x = self.drop1(x)          x = self.fc6(x)            return x        def train_sgd(self,device,epochs=100):          optimizer = optim.Adam(self.parameters(), lr=0.0001)            path = 'weights.tar'          initepoch = 0            if os.path.exists(path) is not True:              loss = nn.CrossEntropyLoss()              # optimizer = optim.SGD(self.parameters(),lr=0.01)            else:              checkpoint = torch.load(path)              self.load_state_dict(checkpoint['model_state_dict'])              optimizer.load_state_dict(checkpoint['optimizer_state_dict'])              initepoch = checkpoint['epoch']              loss = checkpoint['loss']              for epoch in range(initepoch,epochs):  # loop over the dataset multiple times              timestart = time.time()                running_loss = 0.0              total = 0              correct = 0              for i, data in enumerate(trainloader, 0):                  # get the inputs                  inputs, labels = data                  inputs, labels = inputs.to(device),labels.to(device)                    # zero the parameter gradients                  optimizer.zero_grad()                    # forward + backward + optimize                  outputs = self(inputs)                  l = loss(outputs, labels)                  l.backward()                  optimizer.step()                    # print statistics                  running_loss += l.item()                  # print("i ",i)                  if i % 500 == 499:  # print every 500 mini-batches                      print('[%d, %5d] loss: %.4f' %                            (epoch, i, running_loss / 500))                      running_loss = 0.0                      _, predicted = torch.max(outputs.data, 1)                      total += labels.size(0)                      correct += (predicted == labels).sum().item()                      print('Accuracy of the network on the %d tran images: %.3f %%' % (total,                              100.0 * correct / total))                      total = 0                      correct = 0                      torch.save({'epoch':epoch,                                  'model_state_dict':net.state_dict(),                                  'optimizer_state_dict':optimizer.state_dict(),                                  'loss':loss                                  },path)                print('epoch %d cost %3f sec' %(epoch,time.time()-timestart))            print('Finished Training')        def test(self,device):          correct = 0          total = 0          with torch.no_grad():              for data in testloader:                  images, labels = data                  images, labels = images.to(device), labels.to(device)                  outputs = self(images)                  _, predicted = torch.max(outputs.data, 1)                  total += labels.size(0)                  correct += (predicted == labels).sum().item()            print('Accuracy of the network on the 10000 test images: %.3f %%' % (                  100.0 * correct / total))    if __name__ == "__main__":        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")      net = Net()      net = net.to(device)      net.train_sgd(device,30)      net.test(device)