快速学习-Flume企业开发案例

  • 2020 年 2 月 18 日
  • 筆記

第3章 企业开发案例

3.1 监控端口数据官方案例

  1. 案例需求:首先,Flume监控本机44444端口,然后通过telnet工具向本机44444端口发送消息,最后Flume将监听的数据实时显示在控制台。
  2. 需求分析:
  1. 实现步骤: 1.安装telnet工具 将rpm软件包(xinetd-2.3.14-40.el6.x86_64.rpm、telnet-0.17-48.el6.x86_64.rpm和telnet-server-0.17-48.el6.x86_64.rpm)拷入/opt/software文件夹下面。执行RPM软件包安装命令:
[atguigu@hadoop102 software]$ sudo rpm -ivh xinetd-2.3.14-40.el6.x86_64.rpm  [atguigu@hadoop102 software]$ sudo rpm -ivh telnet-0.17-48.el6.x86_64.rpm  [atguigu@hadoop102 software]$ sudo rpm -ivh telnet-server-0.17-48.el6.x86_64.rpm
  1. 判断44444端口是否被占用 [atguigu@hadoop102 flume-telnet]$ sudo netstat -tunlp | grep 44444 功能描述:netstat命令是一个监控TCP/IP网络的非常有用的工具,它可以显示路由表、实际的网络连接以及每一个网络接口设备的状态信息。
基本语法:netstat [选项]  选项参数:  	-t或--tcp:显示TCP传输协议的连线状况;  -u或--udp:显示UDP传输协议的连线状况;  	-n或--numeric:直接使用ip地址,而不通过域名服务器;  	-l或--listening:显示监控中的服务器的Socket;  	-p或--programs:显示正在使用Socket的程序识别码和程序名称;
  1. 创建Flume Agent配置文件flume-telnet-logger.conf 在flume目录下创建job文件夹并进入job文件夹。
[atguigu@hadoop102 flume]$ mkdir job  [atguigu@hadoop102 flume]$ cd job/

在job文件夹下创建Flume Agent配置文件flume-telnet-logger.conf。 [atguigu@hadoop102 job]$ touch flume-telnet-logger.conf

在flume-telnet-logger.conf文件中添加如下内容。 [atguigu@hadoop102 job]$ vim flume-telnet-logger.conf 添加内容如下:

# Name the components on this agent  a1.sources = r1  a1.sinks = k1  a1.channels = c1    # Describe/configure the source  a1.sources.r1.type = netcat  a1.sources.r1.bind = localhost  a1.sources.r1.port = 44444    # Describe the sink  a1.sinks.k1.type = logger    # Use a channel which buffers events in memory  a1.channels.c1.type = memory  a1.channels.c1.capacity = 1000  a1.channels.c1.transactionCapacity = 100    # Bind the source and sink to the channel  a1.sources.r1.channels = c1  a1.sinks.k1.channel = c1

注:配置文件来源于官方手册http://flume.apache.org/FlumeUserGuide.html

  1. 先开启flume监听端口
[atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/flume-telnet-logger.conf -Dflume.root.logger=INFO,console

参数说明: –conf conf/ :表示配置文件存储在conf/目录 –name a1 :表示给agent起名为a1 –conf-file job/flume-telnet.conf :flume本次启动读取的配置文件是在job文件夹下的flume-telnet.conf文件。 -Dflume.root.logger==INFO,console :-D表示flume运行时动态修改flume.root.logger参数属性值,并将控制台日志打印级别设置为INFO级别。日志级别包括:log、info、warn、error。

  1. 使用telnet工具向本机的44444端口发送内容
[atguigu@hadoop102 ~]$ telnet localhost 44444
  1. 在Flume监听页面观察接收数据情况

3.2 实时读取本地文件到HDFS案例

  1. 案例需求:实时监控Hive日志,并上传到HDFS中
  2. 需求分析:
  1. 实现步骤:
    1. Flume要想将数据输出到HDFS,必须持有Hadoop相关jar包 将commons-configuration-1.6.jar、 hadoop-auth-2.7.2.jar、 hadoop-common-2.7.2.jar、 hadoop-hdfs-2.7.2.jar、 commons-io-2.4.jar、 htrace-core-3.1.0-incubating.jar 拷贝到/opt/module/flume/lib文件夹下。
    2. 创建flume-file-hdfs.conf文件 创建文件 [atguigu@hadoop102 job]$ touch flume-file-hdfs.conf 注:要想读取Linux系统中的文件,就得按照Linux命令的规则执行命令。由于Hive日志在Linux系统中所以读取文件的类型选择:exec即execute执行的意思。表示执行Linux命令来读取文件。

[atguigu@hadoop102 job]$ vim flume-file-hdfs.conf 添加如下内容

# Name the components on this agent  a2.sources = r2  a2.sinks = k2  a2.channels = c2    # Describe/configure the source  a2.sources.r2.type = exec  a2.sources.r2.command = tail -F /opt/module/hive/logs/hive.log  a2.sources.r2.shell = /bin/bash -c    # Describe the sink  a2.sinks.k2.type = hdfs  a2.sinks.k2.hdfs.path = hdfs://hadoop102:9000/flume/%Y%m%d/%H  #上传文件的前缀  a2.sinks.k2.hdfs.filePrefix = logs-  #是否按照时间滚动文件夹  a2.sinks.k2.hdfs.round = true  #多少时间单位创建一个新的文件夹  a2.sinks.k2.hdfs.roundValue = 1  #重新定义时间单位  a2.sinks.k2.hdfs.roundUnit = hour  #是否使用本地时间戳  a2.sinks.k2.hdfs.useLocalTimeStamp = true  #积攒多少个Event才flush到HDFS一次  a2.sinks.k2.hdfs.batchSize = 1000  #设置文件类型,可支持压缩  a2.sinks.k2.hdfs.fileType = DataStream  #多久生成一个新的文件  a2.sinks.k2.hdfs.rollInterval = 600  #设置每个文件的滚动大小  a2.sinks.k2.hdfs.rollSize = 134217700  #文件的滚动与Event数量无关  a2.sinks.k2.hdfs.rollCount = 0  #最小冗余数  a2.sinks.k2.hdfs.minBlockReplicas = 1    # Use a channel which buffers events in memory  a2.channels.c2.type = memory  a2.channels.c2.capacity = 1000  a2.channels.c2.transactionCapacity = 100    # Bind the source and sink to the channel  a2.sources.r2.channels = c2  a2.sinks.k2.channel = c2
  1. 执行监控配置 [atguigu@hadoop102 flume]$ bin/flume-ng agent –conf conf/ –name a2 –conf-file job/flume-file-hdfs.conf
  2. 开启Hadoop和Hive并操作Hive产生日志
[atguigu@hadoop102 hadoop-2.7.2]$ sbin/start-dfs.sh  [atguigu@hadoop103 hadoop-2.7.2]$ sbin/start-yarn.sh    [atguigu@hadoop102 hive]$ bin/hive  hive (default)>
  1. 在HDFS上查看文件。

3.3 实时读取目录文件到HDFS案例

  1. 案例需求:使用Flume监听整个目录的文件
  2. 需求分析:
  1. 实现步骤:
    1. 创建配置文件flume-dir-hdfs.conf
创建一个文件  [atguigu@hadoop102 job]$ touch flume-dir-hdfs.conf  打开文件  [atguigu@hadoop102 job]$ vim flume-dir-hdfs.conf  添加如下内容    a3.sources = r3  a3.sinks = k3  a3.channels = c3    # Describe/configure the source  a3.sources.r3.type = spooldir  a3.sources.r3.spoolDir = /opt/module/flume/upload  a3.sources.r3.fileSuffix = .COMPLETED  a3.sources.r3.fileHeader = true  #忽略所有以.tmp结尾的文件,不上传  a3.sources.r3.ignorePattern = ([^ ]*.tmp)    # Describe the sink  a3.sinks.k3.type = hdfs  a3.sinks.k3.hdfs.path = hdfs://hadoop102:9000/flume/upload/%Y%m%d/%H  #上传文件的前缀  a3.sinks.k3.hdfs.filePrefix = upload-  #是否按照时间滚动文件夹  a3.sinks.k3.hdfs.round = true  #多少时间单位创建一个新的文件夹  a3.sinks.k3.hdfs.roundValue = 1  #重新定义时间单位  a3.sinks.k3.hdfs.roundUnit = hour  #是否使用本地时间戳  a3.sinks.k3.hdfs.useLocalTimeStamp = true  #积攒多少个Event才flush到HDFS一次  a3.sinks.k3.hdfs.batchSize = 100  #设置文件类型,可支持压缩  a3.sinks.k3.hdfs.fileType = DataStream  #多久生成一个新的文件  a3.sinks.k3.hdfs.rollInterval = 600  #设置每个文件的滚动大小大概是128M  a3.sinks.k3.hdfs.rollSize = 134217700  #文件的滚动与Event数量无关  a3.sinks.k3.hdfs.rollCount = 0  #最小冗余数  a3.sinks.k3.hdfs.minBlockReplicas = 1    # Use a channel which buffers events in memory  a3.channels.c3.type = memory  a3.channels.c3.capacity = 1000  a3.channels.c3.transactionCapacity = 100    # Bind the source and sink to the channel  a3.sources.r3.channels = c3  a3.sinks.k3.channel = c3
  1. 启动监控文件夹命令 [atguigu@hadoop102 flume]$ bin/flume-ng agent –conf conf/ –name a3 –conf-file job/flume-dir-hdfs.conf 说明: 在使用Spooling Directory Source时
    1. 不要在监控目录中创建并持续修改文件
    2. 上传完成的文件会以.COMPLETED结尾
    3. 被监控文件夹每500毫秒扫描一次文件变动
  2. 向upload文件夹中添加文件 在/opt/module/flume目录下创建upload文件夹 [atguigu@hadoop102 flume]$ mkdir upload 向upload文件夹中添加文件
[atguigu@hadoop102 upload]$ touch atguigu.txt  [atguigu@hadoop102 upload]$ touch atguigu.tmp  [atguigu@hadoop102 upload]$ touch atguigu.log
  1. 查看HDFS上的数据
  1. 等待1s,再次查询upload文件夹
[atguigu@hadoop102 upload]$ ll  总用量 0  -rw-rw-r--. 1 atguigu atguigu 0 5月  20 22:31 atguigu.log.COMPLETED  -rw-rw-r--. 1 atguigu atguigu 0 5月  20 22:31 atguigu.tmp  -rw-rw-r--. 1 atguigu atguigu 0 5月  20 22:31 atguigu.txt.COMPLETED

3.4 单数据源多出口案例(选择器)

单Source多Channel、Sink如图7-2所示。

  1. 案例需求:使用Flume-1监控文件变动,Flume-1将变动内容传递给Flume-2,Flume-2负责存储到HDFS。同时Flume-1将变动内容传递给Flume-3,Flume-3负责输出到Local FileSystem。
  2. 需求分析:
  1. 实现步骤:
    1. 准备工作 在/opt/module/flume/job目录下创建group1文件夹 [atguigu@hadoop102 job]$ cd group1/ 在/opt/module/datas/目录下创建flume3文件夹 [atguigu@hadoop102 datas]$ mkdir flume3
    2. 创建flume-file-flume.conf 配置1个接收日志文件的source和两个channel、两个sink,分别输送给flume-flume-hdfs和flume-flume-dir。 创建配置文件并打开
[atguigu@hadoop102 group1]$ touch flume-file-flume.conf  [atguigu@hadoop102 group1]$ vim flume-file-flume.conf

添加如下内容

# Name the components on this agent  a1.sources = r1  a1.sinks = k1 k2  a1.channels = c1 c2  # 将数据流复制给所有channel  a1.sources.r1.selector.type = replicating    # Describe/configure the source  a1.sources.r1.type = exec  a1.sources.r1.command = tail -F /opt/module/hive/logs/hive.log  a1.sources.r1.shell = /bin/bash -c    # Describe the sink  a1.sinks.k1.type = avro  a1.sinks.k1.hostname = hadoop102  a1.sinks.k1.port = 4141    a1.sinks.k2.type = avro  a1.sinks.k2.hostname = hadoop102  a1.sinks.k2.port = 4142    # Describe the channel  a1.channels.c1.type = memory  a1.channels.c1.capacity = 1000  a1.channels.c1.transactionCapacity = 100    a1.channels.c2.type = memory  a1.channels.c2.capacity = 1000  a1.channels.c2.transactionCapacity = 100    # Bind the source and sink to the channel  a1.sources.r1.channels = c1 c2  a1.sinks.k1.channel = c1  a1.sinks.k2.channel = c2

注:Avro是由Hadoop创始人Doug Cutting创建的一种语言无关的数据序列化和RPC框架。 注:RPC(Remote Procedure Call)—远程过程调用,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。

  1. 创建flume-flume-hdfs.conf
配置上级Flume输出的Source,输出是到HDFS的Sink。  创建配置文件并打开  [atguigu@hadoop102 group1]$ touch flume-flume-hdfs.conf  [atguigu@hadoop102 group1]$ vim flume-flume-hdfs.conf  添加如下内容  # Name the components on this agent  a2.sources = r1  a2.sinks = k1  a2.channels = c1    # Describe/configure the source  a2.sources.r1.type = avro  a2.sources.r1.bind = hadoop102  a2.sources.r1.port = 4141    # Describe the sink  a2.sinks.k1.type = hdfs  a2.sinks.k1.hdfs.path = hdfs://hadoop102:9000/flume2/%Y%m%d/%H  #上传文件的前缀  a2.sinks.k1.hdfs.filePrefix = flume2-  #是否按照时间滚动文件夹  a2.sinks.k1.hdfs.round = true  #多少时间单位创建一个新的文件夹  a2.sinks.k1.hdfs.roundValue = 1  #重新定义时间单位  a2.sinks.k1.hdfs.roundUnit = hour  #是否使用本地时间戳  a2.sinks.k1.hdfs.useLocalTimeStamp = true  #积攒多少个Event才flush到HDFS一次  a2.sinks.k1.hdfs.batchSize = 100  #设置文件类型,可支持压缩  a2.sinks.k1.hdfs.fileType = DataStream  #多久生成一个新的文件  a2.sinks.k1.hdfs.rollInterval = 600  #设置每个文件的滚动大小大概是128M  a2.sinks.k1.hdfs.rollSize = 134217700  #文件的滚动与Event数量无关  a2.sinks.k1.hdfs.rollCount = 0  #最小冗余数  a2.sinks.k1.hdfs.minBlockReplicas = 1    # Describe the channel  a2.channels.c1.type = memory  a2.channels.c1.capacity = 1000  a2.channels.c1.transactionCapacity = 100    # Bind the source and sink to the channel  a2.sources.r1.channels = c1  a2.sinks.k1.channel = c1
  1. 创建flume-flume-dir.conf
配置上级Flume输出的Source,输出是到本地目录的Sink。  创建配置文件并打开  [atguigu@hadoop102 group1]$ touch flume-flume-dir.conf  [atguigu@hadoop102 group1]$ vim flume-flume-dir.conf  添加如下内容  # Name the components on this agent  a3.sources = r1  a3.sinks = k1  a3.channels = c2    # Describe/configure the source  a3.sources.r1.type = avro  a3.sources.r1.bind = hadoop102  a3.sources.r1.port = 4142    # Describe the sink  a3.sinks.k1.type = file_roll  a3.sinks.k1.sink.directory = /opt/module/datas/flume3    # Describe the channel  a3.channels.c2.type = memory  a3.channels.c2.capacity = 1000  a3.channels.c2.transactionCapacity = 100    # Bind the source and sink to the channel  a3.sources.r1.channels = c2  a3.sinks.k1.channel = c2  提示:输出的本地目录必须是已经存在的目录,如果该目录不存在,并不会创建新的目录。
  1. 执行配置文件
分别开启对应配置文件:flume-flume-dir,flume-flume-hdfs,flume-file-flume。  [atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/group1/flume-flume-dir.conf    [atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a2 --conf-file job/group1/flume-flume-hdfs.conf    [atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/group1/flume-file-flume.conf
  1. 启动Hadoop和Hive
[atguigu@hadoop102 hadoop-2.7.2]$ sbin/start-dfs.sh  [atguigu@hadoop103 hadoop-2.7.2]$ sbin/start-yarn.sh    [atguigu@hadoop102 hive]$ bin/hive  hive (default)>
  1. 检查HDFS上数据
  1. 检查/opt/module/datas/flume3目录中数据
[atguigu@hadoop102 flume3]$ ll  总用量 8  -rw-rw-r--. 1 atguigu atguigu 5942 5月  22 00:09 1526918887550-3

3.5 单数据源多出口案例(Sink组)

单Source、Channel多Sink(负载均衡)如图7-3所示

  1. 案例需求:使用Flume-1监控文件变动,Flume-1将变动内容传递给Flume-2,Flume-2负责存储到HDFS。同时Flume-1将变动内容传递给Flume-3,Flume-3也负责存储到HDFS
  2. 需求分析:
  1. 实现步骤:
    1. 准备工作 在/opt/module/flume/job目录下创建group2文件夹 [atguigu@hadoop102 job]$ cd group2/
    2. 创建flume-netcat-flume.conf
配置1个接收日志文件的source和1个channel、两个sink,分别输送给flume-flume-console1和flume-flume-console2。  创建配置文件并打开  [atguigu@hadoop102 group2]$ touch flume-netcat-flume.conf  [atguigu@hadoop102 group2]$ vim flume-netcat-flume.conf  添加如下内容  # Name the components on this agent  a1.sources = r1  a1.channels = c1  a1.sinkgroups = g1  a1.sinks = k1 k2    # Describe/configure the source  a1.sources.r1.type = netcat  a1.sources.r1.bind = localhost  a1.sources.r1.port = 44444    a1.sinkgroups.g1.processor.type = load_balance  a1.sinkgroups.g1.processor.backoff = true  a1.sinkgroups.g1.processor.selector = round_robin  a1.sinkgroups.g1.processor.selector.maxTimeOut=10000    # Describe the sink  a1.sinks.k1.type = avro  a1.sinks.k1.hostname = hadoop102  a1.sinks.k1.port = 4141    a1.sinks.k2.type = avro  a1.sinks.k2.hostname = hadoop102  a1.sinks.k2.port = 4142    # Describe the channel  a1.channels.c1.type = memory  a1.channels.c1.capacity = 1000  a1.channels.c1.transactionCapacity = 100    # Bind the source and sink to the channel  a1.sources.r1.channels = c1  a1.sinkgroups.g1.sinks = k1 k2  a1.sinks.k1.channel = c1  a1.sinks.k2.channel = c1  注:Avro是由Hadoop创始人Doug Cutting创建的一种语言无关的数据序列化和RPC框架。  注:RPC(Remote Procedure Call)—远程过程调用,它是一种通过网络从远程计算机程序上请求服务,而不需要了解底层网络技术的协议。
  1. 创建flume-flume-console1.conf
配置上级Flume输出的Source,输出是到本地控制台。  创建配置文件并打开  [atguigu@hadoop102 group2]$ touch flume-flume-console1.conf  [atguigu@hadoop102 group2]$ vim flume-flume-console1.conf  添加如下内容  # Name the components on this agent  a2.sources = r1  a2.sinks = k1  a2.channels = c1    # Describe/configure the source  a2.sources.r1.type = avro  a2.sources.r1.bind = hadoop102  a2.sources.r1.port = 4141    # Describe the sink  a2.sinks.k1.type = logger    # Describe the channel  a2.channels.c1.type = memory  a2.channels.c1.capacity = 1000  a2.channels.c1.transactionCapacity = 100    # Bind the source and sink to the channel  a2.sources.r1.channels = c1  a2.sinks.k1.channel = c1
  1. 创建flume-flume-console2.conf
配置上级Flume输出的Source,输出是到本地控制台。  创建配置文件并打开  [atguigu@hadoop102 group2]$ touch flume-flume-console2.conf  [atguigu@hadoop102 group2]$ vim flume-flume-console2.conf  添加如下内容  # Name the components on this agent  a3.sources = r1  a3.sinks = k1  a3.channels = c2    # Describe/configure the source  a3.sources.r1.type = avro  a3.sources.r1.bind = hadoop102  a3.sources.r1.port = 4142    # Describe the sink  a3.sinks.k1.type = logger    # Describe the channel  a3.channels.c2.type = memory  a3.channels.c2.capacity = 1000  a3.channels.c2.transactionCapacity = 100    # Bind the source and sink to the channel  a3.sources.r1.channels = c2  a3.sinks.k1.channel = c2
  1. 执行配置文件
分别开启对应配置文件:flume-flume-console2,flume-flume-console1,flume-netcat-flume。  [atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/group2/flume-flume-console2.conf -Dflume.root.logger=INFO,console    [atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a2 --conf-file job/group2/flume-flume-console1.conf -Dflume.root.logger=INFO,console    [atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/group2/flume-netcat-flume.conf
  1. 使用telnet工具向本机的44444端口发送内容
$ telnet localhost 44444
  1. 查看Flume2及Flume3的控制台打印日志

3.6 多数据源汇总案例

多Source汇总数据到单Flume如图7-4所示。

  1. 案例需求: hadoop103上的Flume-1监控文件/opt/module/group.log, hadoop102上的Flume-2监控某一个端口的数据流, Flume-1与Flume-2将数据发送给hadoop104上的Flume-3,Flume-3将最终数据打印到控制台。
  2. 需求分析:
  1. 实现步骤: 0.准备工作 分发Flume [atguigu@hadoop102 module]$ xsync flume 在hadoop102、hadoop103以及hadoop104的/opt/module/flume/job目录下创建一个group3文件夹。 [atguigu@hadoop102 job]$ mkdir group3 [atguigu@hadoop103 job]$ mkdir group3 [atguigu@hadoop104 job]$ mkdir group3
  2. 创建flume1-logger-flume.conf
配置Source用于监控hive.log文件,配置Sink输出数据到下一级Flume。  在hadoop103上创建配置文件并打开  [atguigu@hadoop103 group3]$ touch flume1-logger-flume.conf  [atguigu@hadoop103 group3]$ vim flume1-logger-flume.conf  添加如下内容  # Name the components on this agent  a1.sources = r1  a1.sinks = k1  a1.channels = c1    # Describe/configure the source  a1.sources.r1.type = exec  a1.sources.r1.command = tail -F /opt/module/group.log  a1.sources.r1.shell = /bin/bash -c    # Describe the sink  a1.sinks.k1.type = avro  a1.sinks.k1.hostname = hadoop104  a1.sinks.k1.port = 4141    # Describe the channel  a1.channels.c1.type = memory  a1.channels.c1.capacity = 1000  a1.channels.c1.transactionCapacity = 100    # Bind the source and sink to the channel  a1.sources.r1.channels = c1  a1.sinks.k1.channel = c1
  1. 创建flume2-netcat-flume.conf
配置Source监控端口44444数据流,配置Sink数据到下一级Flume:  在hadoop102上创建配置文件并打开  [atguigu@hadoop102 group3]$ touch flume2-netcat-flume.conf  [atguigu@hadoop102 group3]$ vim flume2-netcat-flume.conf  添加如下内容  # Name the components on this agent  a2.sources = r1  a2.sinks = k1  a2.channels = c1    # Describe/configure the source  a2.sources.r1.type = netcat  a2.sources.r1.bind = hadoop102  a2.sources.r1.port = 44444    # Describe the sink  a2.sinks.k1.type = avro  a2.sinks.k1.hostname = hadoop104  a2.sinks.k1.port = 4141    # Use a channel which buffers events in memory  a2.channels.c1.type = memory  a2.channels.c1.capacity = 1000  a2.channels.c1.transactionCapacity = 100    # Bind the source and sink to the channel  a2.sources.r1.channels = c1  a2.sinks.k1.channel = c1
  1. 创建flume3-flume-logger.conf
配置source用于接收flume1与flume2发送过来的数据流,最终合并后sink到控制台。  在hadoop104上创建配置文件并打开  [atguigu@hadoop104 group3]$ touch flume3-flume-logger.conf  [atguigu@hadoop104 group3]$ vim flume3-flume-logger.conf  添加如下内容  # Name the components on this agent  a3.sources = r1  a3.sinks = k1  a3.channels = c1    # Describe/configure the source  a3.sources.r1.type = avro  a3.sources.r1.bind = hadoop104  a3.sources.r1.port = 4141    # Describe the sink  # Describe the sink  a3.sinks.k1.type = logger    # Describe the channel  a3.channels.c1.type = memory  a3.channels.c1.capacity = 1000  a3.channels.c1.transactionCapacity = 100    # Bind the source and sink to the channel  a3.sources.r1.channels = c1  a3.sinks.k1.channel = c1
  1. 执行配置文件
分别开启对应配置文件:flume3-flume-logger.conf,flume2-netcat-flume.conf,flume1-logger-flume.conf。  [atguigu@hadoop104 flume]$ bin/flume-ng agent --conf conf/ --name a3 --conf-file job/group3/flume3-flume-logger.conf -Dflume.root.logger=INFO,console    [atguigu@hadoop102 flume]$ bin/flume-ng agent --conf conf/ --name a2 --conf-file job/group3/flume2-netcat-flume.conf    [atguigu@hadoop103 flume]$ bin/flume-ng agent --conf conf/ --name a1 --conf-file job/group3/flume1-logger-flume.conf
  1. 在hadoop103上向/opt/module目录下的group.log追加内容
[atguigu@hadoop103 module]$ echo 'hello' > group.log
  1. 在hadoop102上向44444端口发送数据
[atguigu@hadoop102 flume]$ telnet hadoop102 44444
  1. 检查hadoop104上数据