Stream.toList()和Collectors.toList()的性能比较
- 2022 年 5 月 24 日
- 筆記
昨天给大家介绍了Java 16中的Stream增强,可以直接通过toList()来转换成List。
主要涉及下面这几种转换方式:
list.stream().toList();
list.stream().collect(Collectors.toList());
list.stream().collect(Collectors.toUnmodifiableList());
然后,看到有网友评论问:Stream.toList()
和Collectors.toList()
的区别是什么?哪个性能好?
处理结果的区别,其实上一篇文章和视频里都有说:
Stream.toList()
返回的List是不可变List,不能增删改Collectors.toList()
返回的是个普通的List,可以增删改Collectors.toUnmodifiableList()
返回的List是不可变List,不能增删改
而至于性能的话,今天我们就来测试一下,看看哪个性能更好。
@BenchmarkMode(Mode.All)
@Fork(1)
@State(Scope.Thread)
@Warmup(iterations = 20, time = 1, batchSize = 10000)
@Measurement(iterations = 20, time = 1, batchSize = 10000)
public class BenchmarkStreamToList {
@Benchmark
public List<Integer> streamToList() {
return IntStream.range(1, 1000).boxed().toList();
}
@Benchmark
public List<Integer> collectorsToList() {
return IntStream.range(1, 1000).boxed().collect(Collectors.toList());
}
@Benchmark
public List<Integer> streamToList() {
return IntStream.range(1, 1000).boxed().toList();
}
}
结果报告:
Benchmark Mode Cnt Score Error Units
BenchmarkStreamToList.collectorsToList thrpt 20 24.422 ± 0.268 ops/s
BenchmarkStreamToList.collectorsToUnmodifiableList thrpt 20 22.784 ± 0.599 ops/s
BenchmarkStreamToList.streamToList thrpt 20 31.779 ± 1.732 ops/s
BenchmarkStreamToList.collectorsToList avgt 20 0.045 ± 0.006 s/op
BenchmarkStreamToList.collectorsToUnmodifiableList avgt 20 0.062 ± 0.035 s/op
BenchmarkStreamToList.streamToList avgt 20 0.040 ± 0.028 s/op
BenchmarkStreamToList.collectorsToList sample 445 0.046 ± 0.002 s/op
BenchmarkStreamToList.collectorsToList:collectorsToList·p0.00 sample 0.039 s/op
BenchmarkStreamToList.collectorsToList:collectorsToList·p0.50 sample 0.041 s/op
BenchmarkStreamToList.collectorsToList:collectorsToList·p0.90 sample 0.057 s/op
BenchmarkStreamToList.collectorsToList:collectorsToList·p0.95 sample 0.073 s/op
BenchmarkStreamToList.collectorsToList:collectorsToList·p0.99 sample 0.102 s/op
BenchmarkStreamToList.collectorsToList:collectorsToList·p0.999 sample 0.150 s/op
BenchmarkStreamToList.collectorsToList:collectorsToList·p0.9999 sample 0.150 s/op
BenchmarkStreamToList.collectorsToList:collectorsToList·p1.00 sample 0.150 s/op
BenchmarkStreamToList.collectorsToUnmodifiableList sample 460 0.044 ± 0.001 s/op
BenchmarkStreamToList.collectorsToUnmodifiableList:collectorsToUnmodifiableList·p0.00 sample 0.042 s/op
BenchmarkStreamToList.collectorsToUnmodifiableList:collectorsToUnmodifiableList·p0.50 sample 0.044 s/op
BenchmarkStreamToList.collectorsToUnmodifiableList:collectorsToUnmodifiableList·p0.90 sample 0.046 s/op
BenchmarkStreamToList.collectorsToUnmodifiableList:collectorsToUnmodifiableList·p0.95 sample 0.047 s/op
BenchmarkStreamToList.collectorsToUnmodifiableList:collectorsToUnmodifiableList·p0.99 sample 0.051 s/op
BenchmarkStreamToList.collectorsToUnmodifiableList:collectorsToUnmodifiableList·p0.999 sample 0.057 s/op
BenchmarkStreamToList.collectorsToUnmodifiableList:collectorsToUnmodifiableList·p0.9999 sample 0.057 s/op
BenchmarkStreamToList.collectorsToUnmodifiableList:collectorsToUnmodifiableList·p1.00 sample 0.057 s/op
BenchmarkStreamToList.streamToList sample 655 0.031 ± 0.001 s/op
BenchmarkStreamToList.streamToList:streamToList·p0.00 sample 0.030 s/op
BenchmarkStreamToList.streamToList:streamToList·p0.50 sample 0.031 s/op
BenchmarkStreamToList.streamToList:streamToList·p0.90 sample 0.032 s/op
BenchmarkStreamToList.streamToList:streamToList·p0.95 sample 0.033 s/op
BenchmarkStreamToList.streamToList:streamToList·p0.99 sample 0.035 s/op
BenchmarkStreamToList.streamToList:streamToList·p0.999 sample 0.037 s/op
BenchmarkStreamToList.streamToList:streamToList·p0.9999 sample 0.037 s/op
BenchmarkStreamToList.streamToList:streamToList·p1.00 sample 0.037 s/op
BenchmarkStreamToList.collectorsToList ss 20 0.043 ± 0.001 s/op
BenchmarkStreamToList.collectorsToUnmodifiableList ss 20 0.045 ± 0.004 s/op
BenchmarkStreamToList.streamToList ss 20 0.031 ± 0.001 s/op
从报告中我们可以看到:
- 吞吐量:
streamToList
>collectorsToList
>collectorsToUnmodifiableList
- 平均耗时:
streamToList
>collectorsToList
>collectorsToUnmodifiableList
- p0.9999耗时:
streamToList
>collectorsToUnmodifiableList
>collectorsToList
- 冷启动耗时:
streamToList
>collectorsToList
>collectorsToUnmodifiableList
所以,Stream.toList()
的性能要各方面都要好于Collectors.toList()
和Collectors.toUnmodifiableList()
。
如果您学习过程中如遇困难?可以加入我们超高质量的技术交流群,参与交流与讨论,更好的学习与进步!
本文收录在了我正在连载的《Java新特性专栏》,该系列该用电子书的方式编写,如果想要沉浸式阅读学习的话,可以访问Web版本://www.didispace.com/java-features/
再放大一些数据量,试试:
@Benchmark
public List<Integer> streamToList() {
return IntStream.range(1, 10000).boxed().toList();
}
@Benchmark
public List<Integer> collectorsToList() {
return IntStream.range(1, 10000).boxed().collect(Collectors.toList());
}
@Benchmark
public List<Integer> streamToList() {
return IntStream.range(1, 10000).boxed().toList();
}
结果报告:
Benchmark Mode Cnt Score Error Units
BenchmarkStreamToList.collectorsToList thrpt 20 2.186 ± 0.162 ops/s
BenchmarkStreamToList.collectorsToUnmodifiableList thrpt 20 2.184 ± 0.042 ops/s
BenchmarkStreamToList.streamToList thrpt 20 3.538 ± 0.058 ops/s
BenchmarkStreamToList.collectorsToList avgt 20 0.426 ± 0.004 s/op
BenchmarkStreamToList.collectorsToUnmodifiableList avgt 20 0.469 ± 0.016 s/op
BenchmarkStreamToList.streamToList avgt 20 0.293 ± 0.008 s/op
BenchmarkStreamToList.collectorsToList sample 58 0.448 ± 0.049 s/op
BenchmarkStreamToList.collectorsToList:collectorsToList·p0.00 sample 0.414 s/op
BenchmarkStreamToList.collectorsToList:collectorsToList·p0.50 sample 0.422 s/op
BenchmarkStreamToList.collectorsToList:collectorsToList·p0.90 sample 0.458 s/op
BenchmarkStreamToList.collectorsToList:collectorsToList·p0.95 sample 0.560 s/op
BenchmarkStreamToList.collectorsToList:collectorsToList·p0.99 sample 1.160 s/op
BenchmarkStreamToList.collectorsToList:collectorsToList·p0.999 sample 1.160 s/op
BenchmarkStreamToList.collectorsToList:collectorsToList·p0.9999 sample 1.160 s/op
BenchmarkStreamToList.collectorsToList:collectorsToList·p1.00 sample 1.160 s/op
BenchmarkStreamToList.collectorsToUnmodifiableList sample 60 0.458 ± 0.004 s/op
BenchmarkStreamToList.collectorsToUnmodifiableList:collectorsToUnmodifiableList·p0.00 sample 0.447 s/op
BenchmarkStreamToList.collectorsToUnmodifiableList:collectorsToUnmodifiableList·p0.50 sample 0.455 s/op
BenchmarkStreamToList.collectorsToUnmodifiableList:collectorsToUnmodifiableList·p0.90 sample 0.471 s/op
BenchmarkStreamToList.collectorsToUnmodifiableList:collectorsToUnmodifiableList·p0.95 sample 0.482 s/op
BenchmarkStreamToList.collectorsToUnmodifiableList:collectorsToUnmodifiableList·p0.99 sample 0.492 s/op
BenchmarkStreamToList.collectorsToUnmodifiableList:collectorsToUnmodifiableList·p0.999 sample 0.492 s/op
BenchmarkStreamToList.collectorsToUnmodifiableList:collectorsToUnmodifiableList·p0.9999 sample 0.492 s/op
BenchmarkStreamToList.collectorsToUnmodifiableList:collectorsToUnmodifiableList·p1.00 sample 0.492 s/op
BenchmarkStreamToList.streamToList sample 78 0.293 ± 0.012 s/op
BenchmarkStreamToList.streamToList:streamToList·p0.00 sample 0.277 s/op
BenchmarkStreamToList.streamToList:streamToList·p0.50 sample 0.284 s/op
BenchmarkStreamToList.streamToList:streamToList·p0.90 sample 0.309 s/op
BenchmarkStreamToList.streamToList:streamToList·p0.95 sample 0.377 s/op
BenchmarkStreamToList.streamToList:streamToList·p0.99 sample 0.459 s/op
BenchmarkStreamToList.streamToList:streamToList·p0.999 sample 0.459 s/op
BenchmarkStreamToList.streamToList:streamToList·p0.9999 sample 0.459 s/op
BenchmarkStreamToList.streamToList:streamToList·p1.00 sample 0.459 s/op
BenchmarkStreamToList.collectorsToList ss 20 0.474 ± 0.133 s/op
BenchmarkStreamToList.collectorsToUnmodifiableList ss 20 0.493 ± 0.099 s/op
BenchmarkStreamToList.streamToList ss 20 0.325 ± 0.056 s/op
从报告中我们可以看到
- 吞吐量:
streamToList
>collectorsToList
>collectorsToUnmodifiableList
- 平均耗时:
streamToList
>collectorsToList
>collectorsToUnmodifiableList
- p0.9999耗时:
streamToList
>collectorsToUnmodifiableList
>collectorsToList
- 冷启动耗时:
streamToList
>collectorsToList
>collectorsToUnmodifiableList
所以,即使集合内的元素增大,Stream.toList()
的性能在各方面依然都要好于Collectors
下的方法。
好了,今天的分享就到这里,你学会了吗?
本期视频://www.bilibili.com/video/BV16Y411F7Pm/
欢迎关注我的公众号:程序猿DD。第一时间了解前沿行业消息、分享深度技术干货、获取优质学习资源