如何区分人工智能、机器学习与深度学习

  • 2020 年 2 月 14 日
  • 筆記

前言

在过去的几年里,人工智能(AI)一直是媒体大肆炒作的热点话题。机器学习、深度学习和人工智能都出现在不计其数的文章新闻中。但是很多时候,大家对于这些概念并没有一个很清晰的认识,容易把这些概念弄混。

那么我们首先来回答下列问题:机器学习,深度学习以及人工智能之间的关系是怎样的。

关系总览

01

PART

我们先用一张图来表示三者之间的关系:

其实它们三者的关系非常简单,人工智能概念包含最为广阔;机器学习为人工智能的一个大类的方法,其中深度学习是机器学习中目前最火也是表现能力最强的方法。

下面我们分别剖析三个概念。

02

PART

人工智能

人工智能诞生于20 世纪50 年代,当时计算机科学这一新兴领域的少数先驱开始提出疑问:计算机是否能够“思考”?我们今天仍在探索这一问题的答案。人工智能的简洁定义如下:努力将通常由人类完成的智力任务自动化。因此,人工智能是一个综合性的领域,不仅包括机器学习与深度学习,还包括更多不涉及学习的方法。例如,早期的国际象棋程序仅包含程序员精心编写的硬编码规则,并不属于机器学习。在相当长的时间内,许多专家相信,只要程序员精心编写足够多的明确规则来处理知识,就可以实现与人类水平相当的人工智能。这一方法被称为符号主义人工智能(symbolic AI),从20 世纪50 年代到80 年代末是人工智能的主流范式。在20 世纪80 年代的专家系统(expert system)热潮中,这一方法的热度达到了顶峰。

虽然符号主义人工智能适合用来解决定义明确的逻辑问题,比如下国际象棋,但它难以给出明确的规则来解决更加复杂、模糊的问题,比如图像分类、语音识别和语言翻译。于是出现了一种新的方法来替代符号主义人工智能,这就是机器学习(machine learning)。

机器学习

03

PART

在维多利亚时代的英格兰,埃达• 洛夫莱斯伯爵夫人是查尔斯• 巴贝奇的好友兼合作者,后者发明了分析机(Analytical Engine),即第一台通用的机械式计算机。虽然分析机这一想法富有远见,并且相当超前,但它在19 世纪三四十年代被设计出来时并没有打算用作通用计算机,因为当时还没有“通用计算”这一概念。它的用途仅仅是利用机械操作将数学分析领域的某些计算自动化,因此得名“分析机”。1843 年,埃达• 洛夫莱斯伯爵夫人对这项发明评论道:“分析机谈不上能创造什么东西。它只能完成我们命令它做的任何事情……它的职责是帮助我们去实现我们已知的事情。”

随后,人工智能先驱阿兰• 图灵在其1950 年发表的具有里程碑意义的论文“计算机器和智能 中,引用了上述评论并将其称为“洛夫莱斯伯爵夫人的异议”。图灵在这篇论文中介绍了图灵测试以及日后人工智能所包含的重要概念。在引述埃达• 洛夫莱斯伯爵夫人的同时,图灵还思考了这样一个问题:通用计算机是否能够学习与创新?他得出的结论是“能”。

机器学习的概念就来自于图灵的这个问题:对于计算机而言,除了“我们命令它做的任何事情”之外,它能否自我学习执行特定任务的方法?计算机能否让我们大吃一惊?如果没有程序员精心编写的数据处理规则,计算机能否通过观察数据自动学会这些规则?

图灵的这个问题引出了一种新的编程范式。在经典的程序设计(即符号主义人工智能的范式)中,人们输入的是规则(即程序)和需要根据这些规则进行处理的数据,系统输出的是答案(见图1-2)。利用机器学习,人们输入的是数据和从这些数据中预期得到的答案,系统输出的是规则。这些规则随后可应用于新的数据,并使计算机自主生成答案。

机器学习系统是训练出来的,而不是明确地用程序编写出来的。将与某个任务相关的许多示例输入机器学习系统,它会在这些示例中找到统计结构,从而最终找到规则将任务自动化。举个例子,你想为度假照片添加标签,并且希望将这项任务自动化,那么你可以将许多人工打好标签的照片输入机器学习系统,系统将学会将照片与特定标签联系在一起的统计规则。

虽然机器学习在20 世纪90 年代才开始蓬勃发展,但它迅速成为人工智能最受欢迎且最成功的分支领域。这一发展的驱动力来自于速度更快的硬件与更大的数据集。机器学习与数理统计密切相关,但二者在几个重要方面有所不同。不同于统计学,机器学习经常用于处理复杂的大型数据集(比如包含数百万张图像的数据集,每张图像又包含数万个像素),用经典的统计分析(比如贝叶斯分析)来处理这种数据集是不切实际的。因此,机器学习(尤其是深度学习)呈现出相对较少的数学理论(可能太少了),并且是以工程为导向的。这是一门需要上手实践的学科,想法更多地是靠实践来证明,而不是靠理论推导。

04

PART

深度学习

深度学习是机器学习的一个分支领域:它是从数据中学习表示的一种新方法,强调从连续的层(layer)中进行学习,这些层对应于越来越有意义的表示。“深度学习”中的“深度”指的并不是利用这种方法所获取的更深层次的理解,而是指一系列连续的表示层。数据模型中包含多少层,这被称为模型的深度(depth)。这一领域的其他名称包括分层表示学习(layered representations learning)和层级表示学习(hierarchical representations learning)。现代深度学习通常包含数十个甚至上百个连续的表示层,这些表示层全都是从训练数据中自动学习的。与此相反,其他机器学习方法的重点往往是仅仅学习一两层的数据表示,因此有时也被称为浅层学习(shallow learning)。

在深度学习中,这些分层表示几乎总是通过叫作神经网络(neural network)的模型来学习得到的。神经网络的结构是逐层堆叠。神经网络这一术语来自于神经生物学,然而,虽然深度学习的一些核心概念是从人们对大脑的理解中汲取部分灵感而形成的,但深度学习模型不是大脑模型。没有证据表明大脑的学习机制与现代深度学习模型所使用的相同。你可能会读到一些流行科学的文章,宣称深度学习的工作原理与大脑相似或者是根据大脑的工作原理进行建模的,但事实并非如此。对于这一领域的新人来说,如果认为深度学习与神经生物学存在任何关系,那将使人困惑,只会起到反作用。你无须那种“就像我们的头脑一样”的神秘包装,最好也忘掉读过的深度学习与生物学之间的假想联系。就我们的而言,深度学习是从数据中学习表示的一种数学框架。

深度学习算法学到的表示是什么样的?我们来看一个多层网络(见图1-5)如何对数字图像进行变换,以便识别图像中所包含的数字。

如图1-6 所示,这个网络将数字图像转换成与原始图像差别越来越大的表示,而其中关于最终结果的信息却越来越丰富。你可以将深度网络看作多级信息蒸馏操作:信息穿过连续的过滤器,其纯度越来越高(即对任务的帮助越来越大)。

这就是深度学习的技术定义:学习数据表示的多级方法。这个想法很简单,但事实证明,非常简单的机制如果具有足够大的规模,将会产生魔法般的效果。

参考:《python深度学习》弗朗索瓦•肖莱(François Chollet)

·END·