环形缓冲区-Hadoop Shuffle过程中的利器

  • 2020 年 2 月 10 日
  • 筆記

这篇文章来自一个读者在面试过程中的一个问题,Hadoop在shuffle过程中使用了一个数据结构-环形缓冲区

环形队列是在实际编程极为有用的数据结构,它是一个首尾相连的FIFO的数据结构,采用数组的线性空间,数据组织简单。能很快知道队列是否满为空。能以很快速度的来存取数据。 因为有简单高效的原因,甚至在硬件都实现了环形队列。

环形队列广泛用于网络数据收发,和不同程序间数据交换(比如内核与应用程序大量交换数据,从硬件接收大量数据)均使用了环形队列。

环形缓冲区数据结构

Map过程中环形缓冲区是指数据被map处理之后会先放入内存,内存中的这片区域就是环形缓冲区。

环形缓冲区是在MapTask.MapOutputBuffer中定义的,相关的属性如下:

// k/v accounting  // 存放meta数据的IntBuffer,都是int entry,占4byte  private IntBuffer kvmeta; // metadata overlay on backing store  int kvstart;            // marks origin of spill metadata  int kvend;              // marks end of spill metadata  int kvindex;            // marks end of fully serialized records  // 分割meta和key value内容的标识  // meta数据和key value内容都存放在同一个环形缓冲区,所以需要分隔开  int equator;            // marks origin of meta/serialization  int bufstart;           // marks beginning of spill  int bufend;             // marks beginning of collectable  int bufmark;            // marks end of record  int bufindex;           // marks end of collected  int bufvoid;            // marks the point where we should stop                          // reading at the end of the buffer  // 存放key value的byte数组,单位是byte,注意与kvmeta区分  byte[] kvbuffer;        // main output buffer  private final byte[] b0 = new byte[0];    // key value在kvbuffer中的地址存放在偏移kvindex的距离  private static final int VALSTART = 0;         // val offset in acct  private static final int KEYSTART = 1;         // key offset in acct  // partition信息存在kvmeta中偏移kvindex的距离  private static final int PARTITION = 2;        // partition offset in acct  private static final int VALLEN = 3;           // length of value  // 一对key value的meta数据在kvmeta中占用的个数  private static final int NMETA = 4;            // num meta ints  // 一对key value的meta数据在kvmeta中占用的byte数  private static final int METASIZE = NMETA * 4; // size in bytes

环形缓冲区其实是一个数组,数组中存放着key、value的序列化数据和key、value的元数据信息,key/value的元数据存储的格式是int类型,每个key/value对应一个元数据,元数据由4个int组成,第一个int存放value的起始位置,第二个存放key的起始位置,第三个存放partition,最后一个存放value的长度。

key/value序列化的数据和元数据在环形缓冲区中的存储是由equator分隔的,key/value按照索引递增的方向存储,meta则按照索引递减的方向存储,将其数组抽象为一个环形结构之后,以equator为界,key/value顺时针存储,meta逆时针存储

初始化

环形缓冲区的结构在MapOutputBuffer.init中创建。

public void init(MapOutputCollector.Context context                  ) throws IOException, ClassNotFoundException {  ...    //MAP_SORT_SPILL_PERCENT = mapreduce.map.sort.spill.percent    // map 端buffer所占的百分比    //sanity checks    final float spillper =      job.getFloat(JobContext.MAP_SORT_SPILL_PERCENT, (float)0.8);    //IO_SORT_MB = "mapreduce.task.io.sort.mb"    // map 端buffer大小    // mapreduce.task.io.sort.mb * mapreduce.map.sort.spill.percent 最好是16的整数倍    final int sortmb = job.getInt(JobContext.IO_SORT_MB, 100);    // 所有的spill index 在内存所占的大小的阈值    indexCacheMemoryLimit = job.getInt(JobContext.INDEX_CACHE_MEMORY_LIMIT,                                       INDEX_CACHE_MEMORY_LIMIT_DEFAULT);    ...    // 排序的实现类,可以自己实现。这里用的是改写的快排    sorter = ReflectionUtils.newInstance(job.getClass("map.sort.class",          QuickSort.class, IndexedSorter.class), job);    // buffers and accounting    // 上面IO_SORT_MB的单位是MB,左移20位将单位转化为byte    int maxMemUsage = sortmb << 20;    // METASIZE是元数据的长度,元数据有4个int单元,分别为    // VALSTART、KEYSTART、PARTITION、VALLEN,而int为4个byte,    // 所以METASIZE长度为16。下面是计算buffer中最多有多少byte来存元数据    maxMemUsage -= maxMemUsage % METASIZE;    // 元数据数组  以byte为单位    kvbuffer = new byte[maxMemUsage];    bufvoid = kvbuffer.length;    // 将kvbuffer转化为int型的kvmeta  以int为单位,也就是4byte    kvmeta = ByteBuffer.wrap(kvbuffer)       .order(ByteOrder.nativeOrder())       .asIntBuffer();    // 设置buf和kvmeta的分界线    setEquator(0);    bufstart = bufend = bufindex = equator;    kvstart = kvend = kvindex;    // kvmeta中存放元数据实体的最大个数    maxRec = kvmeta.capacity() / NMETA;    // buffer spill时的阈值(不单单是sortmb*spillper)    // 更加精确的是kvbuffer.length*spiller    softLimit = (int)(kvbuffer.length * spillper);    // 此变量较为重要,作为spill的动态衡量标准    bufferRemaining = softLimit;    ...    // k/v serialization    comparator = job.getOutputKeyComparator();    keyClass = (Class<K>)job.getMapOutputKeyClass();    valClass = (Class<V>)job.getMapOutputValueClass();    serializationFactory = new SerializationFactory(job);    keySerializer = serializationFactory.getSerializer(keyClass);    // 将bb作为key序列化写入的output    keySerializer.open(bb);    valSerializer = serializationFactory.getSerializer(valClass);    // 将bb作为value序列化写入的output    valSerializer.open(bb);    ...    // combiner    ...    spillInProgress = false;    // 最后一次merge时,在有combiner的情况下,超过此阈值才执行combiner    minSpillsForCombine = job.getInt(JobContext.MAP_COMBINE_MIN_SPILLS, 3);    spillThread.setDaemon(true);    spillThread.setName("SpillThread");    spillLock.lock();    try {      spillThread.start();      while (!spillThreadRunning) {        spillDone.await();      }    } catch (InterruptedException e) {      throw new IOException("Spill thread failed to initialize", e);    } finally {      spillLock.unlock();    }    if (sortSpillException != null) {      throw new IOException("Spill thread failed to initialize",          sortSpillException);    }  }

init是对环形缓冲区进行初始化构造,由mapreduce.task.io.sort.mb决定map中环形缓冲区的大小sortmb,默认是100M。

此缓冲区也用于存放meta,一个meta占用METASIZE(16byte),则其中用于存放数据的大小是maxMemUsage -= sortmb << 20 % METASIZE(由此可知最好设置sortmb转换为byte之后是16的整数倍),然后用maxMemUsage初始化kvbuffer字节数组kvmeta整形数组,最后设置数组的一些标识信息。利用setEquator(0)设置kvbuffer和kvmeta的分界线,初始化的时候以0为分界线,kvindex为aligned – METASIZE + kvbuffer.length,其位置在环形数组中相当于按照逆时针方向减去METASIZE,由kvindex设置kvstart = kvend = kvindex,由equator设置bufstart = bufend = bufindex = equator,还得设置bufvoid = kvbuffer.length,bufvoid用于标识用于存放数据的最大位置。

为了提高效率,当buffer占用达到阈值之后,会进行spill,这个阈值是由bufferRemaining进行检查的,bufferRemaining由softLimit = (int)(kvbuffer.length * spillper); bufferRemaining = softLimit;进行初始化赋值,这里需要注意的是softLimit并不是sortmb*spillper,而是kvbuffer.length * spillper,当sortmb << 20是16的整数倍时,才可以认为softLimit是sortmb*spillper。

下面是setEquator的代码

// setEquator(0)的代码如下  private void setEquator(int pos) {    equator = pos;    // set index prior to first entry, aligned at meta boundary    // 第一个 entry的末尾位置,即元数据和kv数据的分界线   单位是byte    final int aligned = pos - (pos % METASIZE);    // Cast one of the operands to long to avoid integer overflow    // 元数据中存放数据的起始位置    kvindex = (int)      (((long)aligned - METASIZE + kvbuffer.length) % kvbuffer.length) / 4;    LOG.info("(EQUATOR) " + pos + " kvi " + kvindex +        "(" + (kvindex * 4) + ")");  }

buffer初始化之后的抽象数据结构如下图所示:

环形缓冲区数据结构图

写入buffer

Map通过NewOutputCollector.write方法调用collector.collect向buffer中写入数据,数据写入之前已在NewOutputCollector.write中对要写入的数据进行逐条分区,下面看下collect

// MapOutputBuffer.collect  public synchronized void collect(K key, V value, final int partition                                   ) throws IOException {    ...    // 新数据collect时,先将剩余的空间减去元数据的长度,之后进行判断    bufferRemaining -= METASIZE;    if (bufferRemaining <= 0) {      // start spill if the thread is not running and the soft limit has been      // reached      spillLock.lock();      try {        do {          // 首次spill时,spillInProgress是false          if (!spillInProgress) {            // 得到kvindex的byte位置            final int kvbidx = 4 * kvindex;            // 得到kvend的byte位置            final int kvbend = 4 * kvend;            // serialized, unspilled bytes always lie between kvindex and            // bufindex, crossing the equator. Note that any void space            // created by a reset must be included in "used" bytes            final int bUsed = distanceTo(kvbidx, bufindex);            final boolean bufsoftlimit = bUsed >= softLimit;            if ((kvbend + METASIZE) % kvbuffer.length !=                equator - (equator % METASIZE)) {              // spill finished, reclaim space              resetSpill();              bufferRemaining = Math.min(                  distanceTo(bufindex, kvbidx) - 2 * METASIZE,                  softLimit - bUsed) - METASIZE;              continue;            } else if (bufsoftlimit && kvindex != kvend) {              // spill records, if any collected; check latter, as it may              // be possible for metadata alignment to hit spill pcnt              startSpill();              final int avgRec = (int)                (mapOutputByteCounter.getCounter() /                mapOutputRecordCounter.getCounter());              // leave at least half the split buffer for serialization data              // ensure that kvindex >= bufindex              final int distkvi = distanceTo(bufindex, kvbidx);              final int newPos = (bufindex +                Math.max(2 * METASIZE - 1,                        Math.min(distkvi / 2,                                 distkvi / (METASIZE + avgRec) * METASIZE)))                % kvbuffer.length;              setEquator(newPos);              bufmark = bufindex = newPos;              final int serBound = 4 * kvend;              // bytes remaining before the lock must be held and limits              // checked is the minimum of three arcs: the metadata space, the              // serialization space, and the soft limit              bufferRemaining = Math.min(                  // metadata max                  distanceTo(bufend, newPos),                  Math.min(                    // serialization max                    distanceTo(newPos, serBound),                    // soft limit                    softLimit)) - 2 * METASIZE;            }          }        } while (false);      } finally {        spillLock.unlock();      }    }    // 将key value 及元数据信息写入缓冲区    try {      // serialize key bytes into buffer      int keystart = bufindex;      // 将key序列化写入kvbuffer中,并移动bufindex      keySerializer.serialize(key);      // key所占空间被bufvoid分隔,则移动key,      // 将其值放在连续的空间中便于sort时key的对比      if (bufindex < keystart) {        // wrapped the key; must make contiguous        bb.shiftBufferedKey();        keystart = 0;      }      // serialize value bytes into buffer      final int valstart = bufindex;      valSerializer.serialize(value);      // It's possible for records to have zero length, i.e. the serializer      // will perform no writes. To ensure that the boundary conditions are      // checked and that the kvindex invariant is maintained, perform a      // zero-length write into the buffer. The logic monitoring this could be      // moved into collect, but this is cleaner and inexpensive. For now, it      // is acceptable.      bb.write(b0, 0, 0);        // the record must be marked after the preceding write, as the metadata      // for this record are not yet written      int valend = bb.markRecord();        mapOutputRecordCounter.increment(1);      mapOutputByteCounter.increment(          distanceTo(keystart, valend, bufvoid));        // write accounting info      kvmeta.put(kvindex + PARTITION, partition);      kvmeta.put(kvindex + KEYSTART, keystart);      kvmeta.put(kvindex + VALSTART, valstart);      kvmeta.put(kvindex + VALLEN, distanceTo(valstart, valend));      // advance kvindex      kvindex = (kvindex - NMETA + kvmeta.capacity()) % kvmeta.capacity();    } catch (MapBufferTooSmallException e) {      LOG.info("Record too large for in-memory buffer: " + e.getMessage());      spillSingleRecord(key, value, partition);      mapOutputRecordCounter.increment(1);      return;    }  }

每次写入数据时,执行bufferRemaining -= METASIZE之后,检查bufferRemaining

如果大于0,直接将key/value序列化对和对应的meta写入buffer中,key/value是序列化之后写入的,key/value经过一些列的方法调用Serializer.serialize(key/value) -> WritableSerializer.serialize(key/value) -> BytesWritable.write(dataOut) -> DataOutputStream.write(bytes, 0, size) -> MapOutputBuffer.Buffer.write(b, off, len),最后由MapOutputBuffer.Buffer.write(b, off, len)将数据写入kvbuffer中,write方法如下:

public void write(byte b[], int off, int len)      throws IOException {    // must always verify the invariant that at least METASIZE bytes are    // available beyond kvindex, even when len == 0    bufferRemaining -= len;    if (bufferRemaining <= 0) {      // writing these bytes could exhaust available buffer space or fill      // the buffer to soft limit. check if spill or blocking are necessary      boolean blockwrite = false;      spillLock.lock();      try {        do {          checkSpillException();            final int kvbidx = 4 * kvindex;          final int kvbend = 4 * kvend;          // ser distance to key index          final int distkvi = distanceTo(bufindex, kvbidx);          // ser distance to spill end index          final int distkve = distanceTo(bufindex, kvbend);            // if kvindex is closer than kvend, then a spill is neither in          // progress nor complete and reset since the lock was held. The          // write should block only if there is insufficient space to          // complete the current write, write the metadata for this record,          // and write the metadata for the next record. If kvend is closer,          // then the write should block if there is too little space for          // either the metadata or the current write. Note that collect          // ensures its metadata requirement with a zero-length write          blockwrite = distkvi <= distkve            ? distkvi <= len + 2 * METASIZE            : distkve <= len || distanceTo(bufend, kvbidx) < 2 * METASIZE;            if (!spillInProgress) {            if (blockwrite) {              if ((kvbend + METASIZE) % kvbuffer.length !=                  equator - (equator % METASIZE)) {                // spill finished, reclaim space                // need to use meta exclusively; zero-len rec & 100% spill                // pcnt would fail                resetSpill(); // resetSpill doesn't move bufindex, kvindex                bufferRemaining = Math.min(                    distkvi - 2 * METASIZE,                    softLimit - distanceTo(kvbidx, bufindex)) - len;                continue;              }              // we have records we can spill; only spill if blocked              if (kvindex != kvend) {                startSpill();                // Blocked on this write, waiting for the spill just                // initiated to finish. Instead of repositioning the marker                // and copying the partial record, we set the record start                // to be the new equator                setEquator(bufmark);              } else {                // We have no buffered records, and this record is too large                // to write into kvbuffer. We must spill it directly from                // collect                final int size = distanceTo(bufstart, bufindex) + len;                setEquator(0);                bufstart = bufend = bufindex = equator;                kvstart = kvend = kvindex;                bufvoid = kvbuffer.length;                throw new MapBufferTooSmallException(size + " bytes");              }            }          }            if (blockwrite) {            // wait for spill            try {              while (spillInProgress) {                reporter.progress();                spillDone.await();              }            } catch (InterruptedException e) {                throw new IOException(                    "Buffer interrupted while waiting for the writer", e);            }          }        } while (blockwrite);      } finally {        spillLock.unlock();      }    }    // here, we know that we have sufficient space to write    if (bufindex + len > bufvoid) {      final int gaplen = bufvoid - bufindex;      System.arraycopy(b, off, kvbuffer, bufindex, gaplen);      len -= gaplen;      off += gaplen;      bufindex = 0;    }    System.arraycopy(b, off, kvbuffer, bufindex, len);    bufindex += len;  }

write方法将key/value写入kvbuffer中,如果bufindex+len超过了bufvoid,则将写入的内容分开存储,将一部分写入bufindex和bufvoid之间,然后重置bufindex,将剩余的部分写入,这里不区分key和value,写入key之后会在collect中判断bufindex < keystart,当bufindex小时,则key被分开存储,执行bb.shiftBufferedKey(),value则直接写入,不用判断是否被分开存储,key不能分开存储是因为要对key进行排序。

这里需要注意的是要写入的数据太长,并且kvinde==kvend,则抛出MapBufferTooSmallException异常,在collect中捕获,将此数据直接spill到磁盘spillSingleRecord也就是当单条记录过长时,不写buffer,直接写入磁盘

下面看下bb.shiftBufferedKey()代码

// BlockingBuffer.shiftBufferedKey  protected void shiftBufferedKey() throws IOException {    // spillLock unnecessary; both kvend and kvindex are current    int headbytelen = bufvoid - bufmark;    bufvoid = bufmark;    final int kvbidx = 4 * kvindex;    final int kvbend = 4 * kvend;    final int avail =      Math.min(distanceTo(0, kvbidx), distanceTo(0, kvbend));    if (bufindex + headbytelen < avail) {      System.arraycopy(kvbuffer, 0, kvbuffer, headbytelen, bufindex);      System.arraycopy(kvbuffer, bufvoid, kvbuffer, 0, headbytelen);      bufindex += headbytelen;      bufferRemaining -= kvbuffer.length - bufvoid;    } else {      byte[] keytmp = new byte[bufindex];      System.arraycopy(kvbuffer, 0, keytmp, 0, bufindex);      bufindex = 0;      out.write(kvbuffer, bufmark, headbytelen);      out.write(keytmp);    }  }

shiftBufferedKey时,判断首部是否有足够的空间存放key,有没有足够的空间,则先将首部的部分key写入keytmp中,然后分两次写入,再次调用Buffer.write,如果有足够的空间,分两次copy,先将首部的部分key复制到headbytelen的位置,然后将末尾的部分key复制到首部,移动bufindex,重置bufferRemaining的值。

key/value写入之后,继续写入元数据信息并重置kvindex的值。

spill

一次写入buffer结束,当写入数据比较多,bufferRemaining小于等于0时,准备进行spill,首次spill,spillInProgress为false,此时查看bUsed = distanceTo(kvbidx, bufindex),此时bUsed >= softLimit 并且 (kvbend + METASIZE) % kvbuffer.length == equator - (equator % METASIZE),则进行spill,调用startSpill

private void startSpill() {    // 元数据的边界赋值    kvend = (kvindex + NMETA) % kvmeta.capacity();    // key/value的边界赋值    bufend = bufmark;    // 设置spill运行标识    spillInProgress = true;    ...    // 利用重入锁,对spill线程进行唤醒    spillReady.signal();  }

startSpill唤醒spill线程之后,进程spill操作,但此时map向buffer的写入操作并没有阻塞,需要重新边界equator和bufferRemaining的值,先来看下equator和bufferRemaining值的设定:

// 根据已经写入的kv得出每个record的平均长度  final int avgRec = (int) (mapOutputByteCounter.getCounter() /    mapOutputRecordCounter.getCounter());  // leave at least half the split buffer for serialization data  // ensure that kvindex >= bufindex  // 得到空余空间的大小  final int distkvi = distanceTo(bufindex, kvbidx);  // 得出新equator的位置  final int newPos = (bufindex +    Math.max(2 * METASIZE - 1,            Math.min(distkvi / 2,                     distkvi / (METASIZE + avgRec) * METASIZE)))    % kvbuffer.length;  setEquator(newPos);  bufmark = bufindex = newPos;  final int serBound = 4 * kvend;  // bytes remaining before the lock must be held and limits  // checked is the minimum of three arcs: the metadata space, the  // serialization space, and the soft limit  bufferRemaining = Math.min(      // metadata max      distanceTo(bufend, newPos),      Math.min(        // serialization max        distanceTo(newPos, serBound),        // soft limit        softLimit)) - 2 * METASIZE;

因为equator是kvbuffer和kvmeta的分界线,为了更多的空间存储kv,则最多拿出distkvi的一半来存储meta,并且利用avgRec估算distkvi能存放多少个record和meta对,根据record和meta对的个数估算meta所占空间的大小,从distkvi/2和meta所占空间的大小中取最小值,又因为distkvi中最少得存放一个meta,所占空间为METASIZE,在选取kvindex时需要求aligned,aligned最多为METASIZE-1,总和上述因素,最终选取equator为(bufindex + Math.max(2 * METASIZE - 1, Math.min(distkvi / 2, distkvi / (METASIZE + avgRec) * METASIZE)))。equator选取之后,设置bufmark = bufindex = newPos和kvindex,但此时并不设置bufstart、bufend和kvstart、kvend,因为这几个值要用来表示spill数据的边界。

spill之后,可用的空间减少了,则控制spill的bufferRemaining也应该重新设置,bufferRemaining取三个值的最小值减去2*METASIZE,三个值分别是meta可用占用的空间distanceTo(bufend, newPos),kv可用空间distanceTo(newPos, serBound)和softLimit。这里为什么要减去2*METASIZE,一个是spill之前kvend到kvindex的距离,另一个是当时的kvindex空间????此时,已有一个record要写入buffer,需要从bufferRemaining中减去当前record的元数据占用的空间,即减去METASIZE,另一个METASIZE是在计算equator时,没有包括kvindex到kvend(spill之前)的这段METASIZE,所以要减去这个METASIZE。

接下来解析下SpillThread线程,查看其run方法:

public void run() { spillLock.lock(); spillThreadRunning = true; try { while (true) { spillDone.signal(); // 判断是否在spill,false则挂起SpillThread线程,等待唤醒 while (!spillInProgress) { spillReady.await(); } try { spillLock.unlock(); // 唤醒之后,进行排序和溢写到磁盘 sortAndSpill(); } catch (Throwable t) { sortSpillException = t; } finally { spillLock.lock(); if (bufend < bufstart) { bufvoid = kvbuffer.length; } kvstart = kvend; bufstart = bufend; spillInProgress = false; } } } catch (InterruptedException e) { Thread.currentThread().interrupt(); } finally { spillLock.unlock(); spillThreadRunning = false; }}

run中主要是sortAndSpill

private void sortAndSpill() throws IOException, ClassNotFoundException,                                     InterruptedException {    //approximate the length of the output file to be the length of the    //buffer + header lengths for the partitions    final long size = distanceTo(bufstart, bufend, bufvoid) +                partitions * APPROX_HEADER_LENGTH;    FSDataOutputStream out = null;    try {      // create spill file      // 用来存储index文件      final SpillRecord spillRec = new SpillRecord(partitions);      // 创建写入磁盘的spill文件      final Path filename =          mapOutputFile.getSpillFileForWrite(numSpills, size);      // 打开文件流      out = rfs.create(filename);      // kvend/4 是截止到当前位置能存放多少个元数据实体      final int mstart = kvend / NMETA;      // kvstart 处能存放多少个元数据实体      // 元数据则在mstart和mend之间,(mstart - mend)则是元数据的个数      final int mend = 1 + // kvend is a valid record        (kvstart >= kvend        ? kvstart        : kvmeta.capacity() + kvstart) / NMETA;      // 排序  只对元数据进行排序,只调整元数据在kvmeta中的顺序      // 排序规则是MapOutputBuffer.compare,      // 先对partition进行排序其次对key值排序      sorter.sort(MapOutputBuffer.this, mstart, mend, reporter);      int spindex = mstart;      // 创建rec,用于存放该分区在数据文件中的信息      final IndexRecord rec = new IndexRecord();      final InMemValBytes value = new InMemValBytes();      for (int i = 0; i < partitions; ++i) {        // 临时文件是IFile格式的        IFile.Writer<K, V> writer = null;        try {          long segmentStart = out.getPos();          FSDataOutputStream partitionOut = CryptoUtils.wrapIfNecessary(job, out);          writer = new Writer<K, V>(job, partitionOut, keyClass, valClass, codec,                                    spilledRecordsCounter);          // 往磁盘写数据时先判断是否有combiner          if (combinerRunner == null) {            // spill directly            DataInputBuffer key = new DataInputBuffer();            // 写入相同partition的数据            while (spindex < mend &&                kvmeta.get(offsetFor(spindex % maxRec) + PARTITION) == i) {              final int kvoff = offsetFor(spindex % maxRec);              int keystart = kvmeta.get(kvoff + KEYSTART);              int valstart = kvmeta.get(kvoff + VALSTART);              key.reset(kvbuffer, keystart, valstart - keystart);              getVBytesForOffset(kvoff, value);              writer.append(key, value);              ++spindex;            }          } else {            int spstart = spindex;            while (spindex < mend &&                kvmeta.get(offsetFor(spindex % maxRec)                          + PARTITION) == i) {              ++spindex;            }            // Note: we would like to avoid the combiner if we've fewer            // than some threshold of records for a partition            if (spstart != spindex) {              combineCollector.setWriter(writer);              RawKeyValueIterator kvIter =                new MRResultIterator(spstart, spindex);              combinerRunner.combine(kvIter, combineCollector);            }          }            // close the writer          writer.close();            // record offsets          // 记录当前partition i的信息写入索文件rec中          rec.startOffset = segmentStart;          rec.rawLength = writer.getRawLength() + CryptoUtils.cryptoPadding(job);          rec.partLength = writer.getCompressedLength() + CryptoUtils.cryptoPadding(job);          // spillRec中存放了spill中partition的信息,便于后续堆排序时,取出partition相关的数据进行排序          spillRec.putIndex(rec, i);            writer = null;        } finally {          if (null != writer) writer.close();        }      }      // 判断内存中的index文件是否超出阈值,超出则将index文件写入磁盘      // 当超出阈值时只是把当前index和之后的index写入磁盘      if (totalIndexCacheMemory >= indexCacheMemoryLimit) {        // create spill index file        // 创建index文件        Path indexFilename =            mapOutputFile.getSpillIndexFileForWrite(numSpills, partitions                * MAP_OUTPUT_INDEX_RECORD_LENGTH);        spillRec.writeToFile(indexFilename, job);      } else {        indexCacheList.add(spillRec);        totalIndexCacheMemory +=          spillRec.size() * MAP_OUTPUT_INDEX_RECORD_LENGTH;      }      LOG.info("Finished spill " + numSpills);      ++numSpills;    } finally {      if (out != null) out.close();    }  }

sortAndSpill中,有mstart和mend得到一共有多少条record需要spill到磁盘,调用sorter.sort对meta进行排序,先对partition进行排序,然后按key排序,排序的结果只调整meta的顺序。

排序之后,判断是否有combiner,没有则直接将record写入磁盘,写入时是一个partition一个IndexRecord,如果有combiner,则将该partition的record写入kvIter,然后调用combinerRunner.combine执行combiner。

写入磁盘之后,将spillx.out对应的spillRec放入内存indexCacheList.add(spillRec),如果所占内存totalIndexCacheMemory超过了indexCacheMemoryLimit,则创建index文件,将此次及以后的spillRec写入index文件存入磁盘。

最后spill次数递增。sortAndSpill结束之后,回到run方法中,执行finally中的代码,对kvstart和bufstart赋值,kvstart = kvendbufstart = bufend,设置spillInProgress的状态为false。

在spill的同时,map往buffer的写操作并没有停止,依然在调用collect,再次回到collect方法中,

// MapOutputBuffer.collect  public synchronized void collect(K key, V value, final int partition                                   ) throws IOException {    ...    // 新数据collect时,先将剩余的空间减去元数据的长度,之后进行判断    bufferRemaining -= METASIZE;    if (bufferRemaining <= 0) {      // start spill if the thread is not running and the soft limit has been      // reached      spillLock.lock();      try {        do {          // 首次spill时,spillInProgress是false          if (!spillInProgress) {            // 得到kvindex的byte位置            final int kvbidx = 4 * kvindex;            // 得到kvend的byte位置            final int kvbend = 4 * kvend;            // serialized, unspilled bytes always lie between kvindex and            // bufindex, crossing the equator. Note that any void space            // created by a reset must be included in "used" bytes            final int bUsed = distanceTo(kvbidx, bufindex);            final boolean bufsoftlimit = bUsed >= softLimit;            if ((kvbend + METASIZE) % kvbuffer.length !=                equator - (equator % METASIZE)) {              // spill finished, reclaim space              resetSpill();              bufferRemaining = Math.min(                  distanceTo(bufindex, kvbidx) - 2 * METASIZE,                  softLimit - bUsed) - METASIZE;              continue;            } else if (bufsoftlimit && kvindex != kvend) {              ...            }          }        } while (false);      } finally {        spillLock.unlock();      }    }    ...  }

有新的record需要写入buffer时,判断bufferRemaining -= METASIZE,此时的bufferRemaining是在开始spill时被重置过的(此时的bufferRemaining应该比初始的softLimit要小),当bufferRemaining小于等最后一个METASIZE是当前record进入collect之后bufferRemaining减去的那个METASIZE。

private void resetSpill() {    final int e = equator;    bufstart = bufend = e;    final int aligned = e - (e % METASIZE);    // set start/end to point to first meta record    // Cast one of the operands to long to avoid integer overflow    kvstart = kvend = (int)      (((long)aligned - METASIZE + kvbuffer.length) % kvbuffer.length) / 4;    LOG.info("(RESET) equator " + e + " kv " + kvstart + "(" +      (kvstart * 4) + ")" + " kvi " + kvindex + "(" + (kvindex * 4) + ")");  }

当bufferRemaining再次小于等于0时,进行spill,这以后就都是套路了。环形缓冲区分析到此结束。