数据算法之反转排序 | 寻找相邻单词的数量
- 2020 年 2 月 10 日
- 筆記

这期题目和Leetcode中的一些搜索题目有点类似。
想处理的问题是:统计一个单词相邻前后两位的数量,如有w1,w2,w3,w4,w5,w6,则:

最终要输出为(word,neighbor,frequency)。
我们用五种方法实现:
- MapReduce
- Spark
- Spark SQL的方法
- Scala方法
- Scala版Spark SQL
MapReduce

//map函数 @Override protected void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { String[] tokens = StringUtils.split(value.toString(), " "); //String[] tokens = StringUtils.split(value.toString(), "\s+"); if ((tokens == null) || (tokens.length < 2)) { return; } //计算相邻两个单词的计算规则 for (int i = 0; i < tokens.length; i++) { tokens[i] = tokens[i].replaceAll("\W+", ""); if (tokens[i].equals("")) { continue; } pair.setWord(tokens[i]); int start = (i - neighborWindow < 0) ? 0 : i - neighborWindow; int end = (i + neighborWindow >= tokens.length) ? tokens.length - 1 : i + neighborWindow; for (int j = start; j <= end; j++) { if (j == i) { continue; } pair.setNeighbor(tokens[j].replaceAll("\W", "")); context.write(pair, ONE); } // pair.setNeighbor("*"); totalCount.set(end - start); context.write(pair, totalCount); } }
//reduce函数 @Override protected void reduce(PairOfWords key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException { //等于*表示为单词本身,它的count为totalCount if (key.getNeighbor().equals("*")) { if (key.getWord().equals(currentWord)) { totalCount += totalCount + getTotalCount(values); } else { currentWord = key.getWord(); totalCount = getTotalCount(values); } } else { //其它的则为单次的word,需要通过getTotalCount获得相加 int count = getTotalCount(values); relativeCount.set((double) count / totalCount); context.write(key, relativeCount); } }
Spark
public static void main(String[] args) { if (args.length < 3) { System.out.println("Usage: RelativeFrequencyJava <neighbor-window> <input-dir> <output-dir>"); System.exit(1); } SparkConf sparkConf = new SparkConf().setAppName("RelativeFrequency"); JavaSparkContext sc = new JavaSparkContext(sparkConf); int neighborWindow = Integer.parseInt(args[0]); String input = args[1]; String output = args[2]; final Broadcast<Integer> brodcastWindow = sc.broadcast(neighborWindow); JavaRDD<String> rawData = sc.textFile(input); /* * Transform the input to the format: (word, (neighbour, 1)) */ JavaPairRDD<String, Tuple2<String, Integer>> pairs = rawData.flatMapToPair( new PairFlatMapFunction<String, String, Tuple2<String, Integer>>() { private static final long serialVersionUID = -6098905144106374491L; @Override public java.util.Iterator<scala.Tuple2<String, scala.Tuple2<String, Integer>>> call(String line) throws Exception { List<Tuple2<String, Tuple2<String, Integer>>> list = new ArrayList<Tuple2<String, Tuple2<String, Integer>>>(); String[] tokens = line.split("\s"); for (int i = 0; i < tokens.length; i++) { int start = (i - brodcastWindow.value() < 0) ? 0 : i - brodcastWindow.value(); int end = (i + brodcastWindow.value() >= tokens.length) ? tokens.length - 1 : i + brodcastWindow.value(); for (int j = start; j <= end; j++) { if (j != i) { list.add(new Tuple2<String, Tuple2<String, Integer>>(tokens[i], new Tuple2<String, Integer>(tokens[j], 1))); } else { // do nothing continue; } } } return list.iterator(); } } ); // (word, sum(word)) //PairFunction<T, K, V> T => Tuple2<K, V> JavaPairRDD<String, Integer> totalByKey = pairs.mapToPair( new PairFunction<Tuple2<String, Tuple2<String, Integer>>, String, Integer>() { private static final long serialVersionUID = -213550053743494205L; @Override public Tuple2<String, Integer> call(Tuple2<String, Tuple2<String, Integer>> tuple) throws Exception { return new Tuple2<String, Integer>(tuple._1, tuple._2._2); } }).reduceByKey( new Function2<Integer, Integer, Integer>() { private static final long serialVersionUID = -2380022035302195793L; @Override public Integer call(Integer v1, Integer v2) throws Exception { return (v1 + v2); } }); JavaPairRDD<String, Iterable<Tuple2<String, Integer>>> grouped = pairs.groupByKey(); // (word, (neighbour, 1)) -> (word, (neighbour, sum(neighbour))) //flatMapValues至少对value进行操作,但是不改变key的顺序 JavaPairRDD<String, Tuple2<String, Integer>> uniquePairs = grouped.flatMapValues( //Function<T1, R> -> R call(T1 v1) new Function<Iterable<Tuple2<String, Integer>>, Iterable<Tuple2<String, Integer>>>() { private static final long serialVersionUID = 5790208031487657081L; @Override public Iterable<Tuple2<String, Integer>> call(Iterable<Tuple2<String, Integer>> values) throws Exception { Map<String, Integer> map = new HashMap<>(); List<Tuple2<String, Integer>> list = new ArrayList<>(); Iterator<Tuple2<String, Integer>> iterator = values.iterator(); while (iterator.hasNext()) { Tuple2<String, Integer> value = iterator.next(); int total = value._2; if (map.containsKey(value._1)) { total += map.get(value._1); } map.put(value._1, total); } for (Map.Entry<String, Integer> kv : map.entrySet()) { list.add(new Tuple2<String, Integer>(kv.getKey(), kv.getValue())); } return list; } }); // (word, ((neighbour, sum(neighbour)), sum(word))) JavaPairRDD<String, Tuple2<Tuple2<String, Integer>, Integer>> joined = uniquePairs.join(totalByKey); // ((key, neighbour), sum(neighbour)/sum(word)) JavaPairRDD<Tuple2<String, String>, Double> relativeFrequency = joined.mapToPair( new PairFunction<Tuple2<String, Tuple2<Tuple2<String, Integer>, Integer>>, Tuple2<String, String>, Double>() { private static final long serialVersionUID = 3870784537024717320L; @Override public Tuple2<Tuple2<String, String>, Double> call(Tuple2<String, Tuple2<Tuple2<String, Integer>, Integer>> tuple) throws Exception { return new Tuple2<Tuple2<String, String>, Double>(new Tuple2<String, String>(tuple._1, tuple._2._1._1), ((double) tuple._2._1._2 / tuple._2._2)); } }); // For saving the output in tab separated format // ((key, neighbour), relative_frequency) //将结果转换成一个String JavaRDD<String> formatResult_tab_separated = relativeFrequency.map( new Function<Tuple2<Tuple2<String, String>, Double>, String>() { private static final long serialVersionUID = 7312542139027147922L; @Override public String call(Tuple2<Tuple2<String, String>, Double> tuple) throws Exception { return tuple._1._1 + "t" + tuple._1._2 + "t" + tuple._2; } }); // save output formatResult_tab_separated.saveAsTextFile(output); // done sc.close(); }
Spark SQL
public static void main(String[] args) { if (args.length < 3) { System.out.println("Usage: SparkSQLRelativeFrequency <neighbor-window> <input-dir> <output-dir>"); System.exit(1); } SparkConf sparkConf = new SparkConf().setAppName("SparkSQLRelativeFrequency"); //创建SparkSQL需要的SparkSession SparkSession spark = SparkSession .builder() .appName("SparkSQLRelativeFrequency") .config(sparkConf) .getOrCreate(); JavaSparkContext sc = new JavaSparkContext(spark.sparkContext()); int neighborWindow = Integer.parseInt(args[0]); String input = args[1]; String output = args[2]; final Broadcast<Integer> brodcastWindow = sc.broadcast(neighborWindow); /* *注册一个Schema表,这个frequency等会要用 * Schema (word, neighbour, frequency) */ StructType rfSchema = new StructType(new StructField[]{ new StructField("word", DataTypes.StringType, false, Metadata.empty()), new StructField("neighbour", DataTypes.StringType, false, Metadata.empty()), new StructField("frequency", DataTypes.IntegerType, false, Metadata.empty())}); JavaRDD<String> rawData = sc.textFile(input); /* * Transform the input to the format: (word, (neighbour, 1)) */ JavaRDD<Row> rowRDD = rawData .flatMap(new FlatMapFunction<String, Row>() { private static final long serialVersionUID = 5481855142090322683L; @Override public Iterator<Row> call(String line) throws Exception { List<Row> list = new ArrayList<>(); String[] tokens = line.split("\s"); for (int i = 0; i < tokens.length; i++) { int start = (i - brodcastWindow.value() < 0) ? 0 : i - brodcastWindow.value(); int end = (i + brodcastWindow.value() >= tokens.length) ? tokens.length - 1 : i + brodcastWindow.value(); for (int j = start; j <= end; j++) { if (j != i) { list.add(RowFactory.create(tokens[i], tokens[j], 1)); } else { // do nothing continue; } } } return list.iterator(); } }); //创建DataFrame Dataset<Row> rfDataset = spark.createDataFrame(rowRDD, rfSchema); //将rfDataset转成一个table,可以进行查询 rfDataset.createOrReplaceTempView("rfTable"); String query = "SELECT a.word, a.neighbour, (a.feq_total/b.total) rf " + "FROM (SELECT word, neighbour, SUM(frequency) feq_total FROM rfTable GROUP BY word, neighbour) a " + "INNER JOIN (SELECT word, SUM(frequency) as total FROM rfTable GROUP BY word) b ON a.word = b.word"; Dataset<Row> sqlResult = spark.sql(query); sqlResult.show(); // print first 20 records on the console sqlResult.write().parquet(output + "/parquetFormat"); // saves output in compressed Parquet format, recommended for large projects. sqlResult.rdd().saveAsTextFile(output + "/textFormat"); // to see output via cat command // done sc.close(); spark.stop(); }
Scala
def main(args: Array[String]): Unit = { if (args.size < 3) { println("Usage: RelativeFrequency <neighbor-window> <input-dir> <output-dir>") sys.exit(1) } val sparkConf = new SparkConf().setAppName("RelativeFrequency") val sc = new SparkContext(sparkConf) val neighborWindow = args(0).toInt val input = args(1) val output = args(2) val brodcastWindow = sc.broadcast(neighborWindow) val rawData = sc.textFile(input) /* * Transform the input to the format: * (word, (neighbour, 1)) */ val pairs = rawData.flatMap(line => { val tokens = line.split("\s") for { i <- 0 until tokens.length start = if (i - brodcastWindow.value < 0) 0 else i - brodcastWindow.value end = if (i + brodcastWindow.value >= tokens.length) tokens.length - 1 else i + brodcastWindow.value j <- start to end if (j != i) //用yield来收集转换之后的函数(word, (neighbour, 1)) } yield (tokens(i), (tokens(j), 1)) }) // (word, sum(word)) val totalByKey = pairs.map(t => (t._1, t._2._2)).reduceByKey(_ + _) val grouped = pairs.groupByKey() // (word, (neighbour, sum(neighbour))) val uniquePairs = grouped.flatMapValues(_.groupBy(_._1).mapValues(_.unzip._2.sum)) //用join函数把两个RDD连接起来 // (word, ((neighbour, sum(neighbour)), sum(word))) val joined = uniquePairs join totalByKey // ((key, neighbour), sum(neighbour)/sum(word)) val relativeFrequency = joined.map(t => { ((t._1, t._2._1._1), (t._2._1._2.toDouble / t._2._2.toDouble)) }) // For saving the output in tab separated format // ((key, neighbour), relative_frequency) val formatResult_tab_separated = relativeFrequency.map(t => t._1._1 + "t" + t._1._2 + "t" + t._2) formatResult_tab_separated.saveAsTextFile(output) // done sc.stop() }
Scala版Spark SQL
def main(args: Array[String]): Unit = { if (args.size < 3) { println("Usage: SparkSQLRelativeFrequency <neighbor-window> <input-dir> <output-dir>") sys.exit(1) } val sparkConf = new SparkConf().setAppName("SparkSQLRelativeFrequency") val spark = SparkSession .builder() .config(sparkConf) .getOrCreate() val sc = spark.sparkContext val neighborWindow = args(0).toInt val input = args(1) val output = args(2) val brodcastWindow = sc.broadcast(neighborWindow) val rawData = sc.textFile(input) /* * Schema * (word, neighbour, frequency) */ val rfSchema = StructType(Seq( StructField("word", StringType, false), StructField("neighbour", StringType, false), StructField("frequency", IntegerType, false))) /* * Transform the input to the format: * Row(word, neighbour, 1) */ //转换成StructType中要求的格式 val rowRDD = rawData.flatMap(line => { val tokens = line.split("\s") for { i <- 0 until tokens.length //正常的计算规则,与MapReduce有区别 start = if (i - brodcastWindow.value < 0) 0 else i - brodcastWindow.value end = if (i + brodcastWindow.value >= tokens.length) tokens.length - 1 else i + brodcastWindow.value j <- start to end if (j != i) } yield Row(tokens(i), tokens(j), 1) }) val rfDataFrame = spark.createDataFrame(rowRDD, rfSchema) //创建rfTable表 rfDataFrame.createOrReplaceTempView("rfTable") import spark.sql val query = "SELECT a.word, a.neighbour, (a.feq_total/b.total) rf " + "FROM (SELECT word, neighbour, SUM(frequency) feq_total FROM rfTable GROUP BY word, neighbour) a " + "INNER JOIN (SELECT word, SUM(frequency) as total FROM rfTable GROUP BY word) b ON a.word = b.word" val sqlResult = sql(query) sqlResult.show() // print first 20 records on the console sqlResult.write.save(output + "/parquetFormat") // saves output in compressed Parquet format, recommended for large projects. sqlResult.rdd.saveAsTextFile(output + "/textFormat") // to see output via cat command // done spark.stop() }
以上就是用五种方法解决这个问题。