­

Debezium SQL Server Source Connector+Kafka+Spark+MySQL 实时数据处理

  • 2019 年 10 月 3 日
  • 筆記

写在前面

前段时间在实时获取SQLServer数据库变化时候,整个过程可谓是坎坷。然后就想在这里记录一下。

本文的技术栈: Debezium SQL Server Source Connector+Kafka+Spark+MySQL

ps:后面应该会将数据放到Kudu上。

然后主要记录一下,整个组件使用和组件对接过程中一些注意点和坑。

开始吧

在处理实时数据时,需要即时地获得数据库表中数据的变化,然后将数据变化发送到Kafka中。不同的数据库有不同的组件进行处理。

常见的MySQL数据库,就有比较多的支持 canalmaxwell等,他们都是类似 MySQL binlog 增量订阅&消费组件这种模式 。那么关于微软的SQLServer数据库,好像整个开源社区 支持就没有那么好了。

1.选择Connector

Debezium的SQL Server连接器是一种源连接器,可以获取SQL Server数据库中现有数据的快照,然后监视和记录对该数据的所有后续行级更改。每个表的所有事件都记录在单独的Kafka Topic中,应用程序和服务可以轻松使用它们。然后本连接器也是基于MSSQL的change data capture实现。

2.安装Connector

我参照官方文档安装是没有问题的。

2.1 Installing Confluent Hub Client

Confluent Hub客户端本地安装为Confluent Platform的一部分,位于/ bin目录中。
Linux
Download and unzip the Confluent Hub tarball.

[root@hadoop001 softs]# ll confluent-hub-client-latest.tar  -rw-r--r--. 1 root root 6909785 9月  24 10:02 confluent-hub-client-latest.tar  [root@hadoop001 softs]# tar confluent-hub-client-latest.tar -C ../app/conn/  [root@hadoop001 softs]# ll ../app/conn/  总用量 6748  drwxr-xr-x. 2 root root      27 9月  24 10:43 bin  -rw-r--r--. 1 root root 6909785 9月  24 10:02 confluent-hub-client-latest.tar  drwxr-xr-x. 3 root root      34 9月  24 10:05 etc  drwxr-xr-x. 2 root root       6 9月  24 10:08 kafka-mssql  drwxr-xr-x. 4 root root      29 9月  24 10:05 share  [root@hadoop001 softs]#

配置bin目录到系统环境变量中

export CONN_HOME=/root/app/conn  export PATH=$CONN_HOME/bin:$PATH

确认是否安装成功

[root@hadoop001 ~]# source /etc/profile  [root@hadoop001 ~]# confluent-hub  usage: confluent-hub <command> [ <args> ]    Commands are:      help      Display help information      install   install a component from either Confluent Hub or from a local file    See 'confluent-hub help <command>' for more information on a specific command.  [root@hadoop001 ~]# 

2.2 Install the SQL Server Connector
使用命令confluent-hub

[root@hadoop001 ~]# confluent-hub install debezium/debezium-connector-sqlserver:0.9.4  The component can be installed in any of the following Confluent Platform installations:    1. / (installed rpm/deb package)    2. /root/app/conn (where this tool is installed)  Choose one of these to continue the installation (1-2): 2  Do you want to install this into /root/app/conn/share/confluent-hub-components? (yN) n    Specify installation directory: /root/app/conn/share/java/confluent-hub-client    Component's license:  Apache 2.0  https://github.com/debezium/debezium/blob/master/LICENSE.txt  I agree to the software license agreement (yN) y    You are about to install 'debezium-connector-sqlserver' from Debezium Community, as published on Confluent Hub.  Do you want to continue? (yN) y

注意:Specify installation directory:这个安装目录最好是你刚才的confluent-hub 目录下的 /share/java/confluent-hub-client 这个目录下。其余的基本操作就好。

3.配置Connector

首先需要对Connector进行配置,配置文件位于 $KAFKA_HOME/config/connect-distributed.properties:

# These are defaults. This file just demonstrates how to override some settings.  # kafka集群地址,我这里是单节点多Broker模式  bootstrap.servers=haoop001:9093,hadoop001:9094,hadoop001:9095    # Connector集群的名称,同一集群内的Connector需要保持此group.id一致  group.id=connect-cluster    # The converters specify the format of data in Kafka and how to translate it into Connect data. Every Connect user will  # need to configure these based on the format they want their data in when loaded from or stored into Kafka  # 存储到kafka的数据格式  key.converter=org.apache.kafka.connect.json.JsonConverter  value.converter.schemas.enable=false    # The internal converter used for offsets and config data is configurable and must be specified, but most users will  # 内部转换器的格式,针对offsets、config和status,一般不需要修改  internal.key.converter=org.apache.kafka.connect.json.JsonConverter  internal.value.converter=org.apache.kafka.connect.json.JsonConverter  internal.key.converter.schemas.enable=false  internal.value.converter.schemas.enable=false    # Topic to use for storing offsets. This topic should have many partitions and be replicated.  # 用于保存offsets的topic,应该有多个partitions,并且拥有副本(replication),主要根据你的集群实际情况来  # Kafka Connect会自动创建这个topic,但是你可以根据需要自行创建  offset.storage.topic=connect-offsets-2  offset.storage.replication.factor=3  offset.storage.partitions=1    # 保存connector和task的配置,应该只有1partition,并且有3个副本  config.storage.topic=connect-configs-2  config.storage.replication.factor=3      # 用于保存状态,可以拥有多个partitionreplication  # Topic to use for storing statuses. This topic can have multiple partitions and should be replicated.  status.storage.topic=connect-status-2  status.storage.replication.factor=3  status.storage.partitions=1      offset.storage.file.filename=/root/data/kafka-logs/offset-storage-file    # Flush much faster than normal, which is useful for testing/debugging  offset.flush.interval.ms=10000      # REST端口号  rest.port=18083    # 保存connectors的路径  #plugin.path=/root/app/kafka_2.11-0.10.1.1/connectors  plugin.path=/root/app/conn/share/java/confluent-hub-client

4.创建kafka Topic

我这里是单节点多Broker模式的Kafka,那么创建Topic可以如下:

kafka-topics.sh --zookeeper hadoop001:2181 --create --topic connect-offsets-2 --replication-factor 3 --partitions 1    kafka-topics.sh --zookeeper hadoop001:2181 --create --topic connect-configs-2 --replication-factor 3 --partitions 1    kafka-topics.sh --zookeeper hadoop001:2181 --create --topic connect-status-2 --replication-factor 3 --partitions 1

查看状态 <很重要>

[root@hadoop001 ~]# kafka-topics.sh --describe --zookeeper hadoop001:2181 --topic connect-offsets-2  Topic:connect-offsets-2 PartitionCount:1    ReplicationFactor:3 Configs:      Topic: connect-offsets-2    Partition: 0    Leader: 3   Replicas: 3,1,2 Isr: 3,1,2    [root@hadoop001 ~]# kafka-topics.sh --describe --zookeeper hadoop001:2181 --topic connect-configs-2  Topic:connect-configs-2 PartitionCount:1    ReplicationFactor:3 Configs:      Topic: connect-configs-2    Partition: 0    Leader: 1   Replicas: 1,2,3 Isr: 1,2,3    [root@hadoop001 ~]# kafka-topics.sh --describe --zookeeper hadoop001:2181 --topic connect-status-2  Topic:connect-status-2  PartitionCount:1    ReplicationFactor:3 Configs:      Topic: connect-status-2 Partition: 0    Leader: 3   Replicas: 3,1,2 Isr: 3,1,2  [root@hadoop001 ~]#

5.开启SqlServer Change Data Capture(CDC)更改数据捕获

变更数据捕获用于捕获应用到 SQL Server 表中的插入、更新和删除活动,并以易于使用的关系格式提供这些变更的详细信息。变更数据捕获所使用的更改表中包含镜像所跟踪源表列结构的列,同时还包含了解所发生的变更所需的元数据。变更数据捕获提供有关对表和数据库所做的 DML 更改的信息。通过使用变更数据捕获,您无需使用费用高昂的方法,如用户触发器、时间戳列和联接查询等。

数据变更历史表会随着业务的持续,变得很大,所以默认情况下,变更数据历史会在本地数据库保留3天(可以通过视图msdb.dbo.cdc_jobs的字段retention来查询,当然也可以更改对应的表来修改保留时间),每天会通过SqlServer后台代理任务,每天晚上2点定时删除。所以推荐定期的将变更数据转移到数据仓库中。

以下命令基本就够用了

--查看数据库是否起用CDC    GO    SELECT [name], database_id, is_cdc_enabled    FROM sys.databases    GO    --数据库起用CDC   USE test1   GO   EXEC sys.sp_cdc_enable_db   GO    --关闭数据库CDC   USE test1   go   exec sys.sp_cdc_disable_db   go    --查看表是否启用CDC  USE test1  GO  SELECT [name], is_tracked_by_cdc  FROM sys.tables  GO  --启用表的CDC,前提是数据库启用  USE Demo01  GO  EXEC sys.sp_cdc_enable_table  @source_schema = 'dbo',  @source_name   = 'user',  @capture_instance='user',  @role_name     = NULL  GO    --关闭表上的CDC功能  USE test1  GO  EXEC sys.sp_cdc_disable_table  @source_schema = 'dbo',  @source_name   = 'user',  @capture_instance='user'  GO    --可能不记得或者不知道开启了什么表的捕获,返回所有表的变更捕获配置信息    EXECUTE sys.sp_cdc_help_change_data_capture;  GO    --查看对某个实例(即表)的哪些列做了捕获监控:    EXEC sys.sp_cdc_get_captured_columns  @capture_instance = 'user'       --查找配置信息 -retention 变更数据保留的分钟数  SELECT * FROM test1.dbo.cdc_jobs    --更改数据保留时间为分钟  EXECUTE sys.sp_cdc_change_job  @job_type = N'cleanup',  @retention=1440  GO    --停止捕获作业  exec sys.sp_cdc_stop_job N'capture'  go  --启动捕获作业  exec sys.sp_cdc_start_job N'capture'  go    

6.运行Connector

怎么运行呢?参照

[root@hadoop001 bin]# pwd  /root/app/kafka_2.11-1.1.1/bin  [root@hadoop001 bin]# ./connect-distributed.sh  USAGE: ./connect-distributed.sh [-daemon] connect-distributed.properties  [root@hadoop001 bin]#  [root@hadoop001 bin]# ./connect-distributed.sh ../config/connect-distributed.properties    ... 这里就会有大量日志输出

验证:

[root@hadoop001 ~]# netstat -tanp |grep 18083  tcp6       0      0 :::18083                :::*                    LISTEN      29436/java  [root@hadoop001 ~]#

6.1 获取Worker的信息

ps:可能你需要安装jq这个软件: yum -y install jq ,当然可以在浏览器上打开

[root@hadoop001 ~]# curl -s hadoop001:18083 | jq  {    "version": "1.1.1",    "commit": "8e07427ffb493498",    "kafka_cluster_id": "dmUSlNNLQ9OyJiK-bUc6Tw"  }  [root@hadoop001 ~]#

6.2 获取Worker上已经安装的Connector

[root@hadoop001 ~]# curl -s hadoop001:18083/connector-plugins | jq  [    {      "class": "io.debezium.connector.sqlserver.SqlServerConnector",      "type": "source",      "version": "0.9.5.Final"    },    {      "class": "org.apache.kafka.connect.file.FileStreamSinkConnector",      "type": "sink",      "version": "1.1.1"    },    {      "class": "org.apache.kafka.connect.file.FileStreamSourceConnector",      "type": "source",      "version": "1.1.1"    }  ]  [root@hadoop001 ~]#  

可以看见io.debezium.connector.sqlserver.SqlServerConnector 这个是我们自己刚才安装的连接器

6.3 列出当前运行的connector(task)

[root@hadoop001 ~]#  curl -s hadoop001:18083/connectors | jq  []  [root@hadoop001 ~]# 

6.4 提交Connector用户配置 《重点》

当提交用户配置时,就会启动一个Connector Task,
Connector Task执行实际的作业。
用户配置是一个Json文件,同样通过REST API提交:

curl -s -X POST -H "Content-Type: application/json" --data '{   "name": "connector-mssql-online-1",   "config": {       "connector.class" : "io.debezium.connector.sqlserver.SqlServerConnector",       "tasks.max" : "1",       "database.server.name" : "test1",       "database.hostname" : "hadoop001",       "database.port" : "1433",       "database.user" : "sa",       "database.password" : "xxx",       "database.dbname" : "test1",       "database.history.kafka.bootstrap.servers" : "hadoop001:9093",       "database.history.kafka.topic": "test1.t201909262.bak"       }  }' http://hadoop001:18083/connectors

马上查看connector当前状态,确保状态是RUNNING

[root@hadoop001 ~]# curl -s hadoop001:18083/connectors/connector-mssql-online-1/status | jq  {    "name": "connector-mssql-online-1",    "connector": {      "state": "RUNNING",      "worker_id": "xxx:18083"    },    "tasks": [      {        "state": "RUNNING",        "id": 0,        "worker_id": "xxx:18083"      }    ],    "type": "source"  }  [root@hadoop001 ~]#  

此时查看Kafka Topic

[root@hadoop001 ~]#  kafka-topics.sh --list --zookeeper hadoop001:2181  __consumer_offsets  connect-configs-2  connect-offsets-2  connect-status-2  #自动生成的Topic, 记录表结构的变化,生成规则:你的connect中自定义的  test1.t201909262.bak    [root@hadoop001 ~]#  

再次列出运行的connector(task)

[root@hadoop001 ~]#  curl -s hadoop001:18083/connectors | jq  [    "connector-mssql-online-1"  ]  [root@hadoop001 ~]# 

6.5 查看connector的信息

[root@hadoop001 ~]# curl -s hadoop001:18083/connectors/connector-mssql-online-1 | jq  {    "name": "connector-mssql-online-1",    "config": {      "connector.class": "io.debezium.connector.sqlserver.SqlServerConnector",      "database.user": "sa",      "database.dbname": "test1",      "tasks.max": "1",      "database.hostname": "hadoop001",      "database.password": "xxx",      "database.history.kafka.bootstrap.servers": "hadoop001:9093",      "database.history.kafka.topic": "test1.t201909262.bak",      "name": "connector-mssql-online-1",      "database.server.name": "test1",      "database.port": "1433"    },    "tasks": [      {        "connector": "connector-mssql-online-1",        "task": 0      }    ],    "type": "source"  }  [root@hadoop001 ~]#

6.6 查看connector下运行的task信息

[root@hadoop001 ~]# curl -s hadoop001:18083/connectors/connector-mssql-online-1/tasks | jq  [    {      "id": {        "connector": "connector-mssql-online-1",        "task": 0      },      "config": {        "connector.class": "io.debezium.connector.sqlserver.SqlServerConnector",        "database.user": "sa",        "database.dbname": "test1",        "task.class": "io.debezium.connector.sqlserver.SqlServerConnectorTask",        "tasks.max": "1",        "database.hostname": "hadoop001",        "database.password": "xxx",        "database.history.kafka.bootstrap.servers": "hadoop001:9093",        "database.history.kafka.topic": "test1.t201909262.bak",        "name": "connector-mssql-online-1",        "database.server.name": "test1",        "database.port": "1433"      }    }  ]  [root@hadoop001 ~]#

task的配置信息继承自connector的配置

6.7 暂停/重启/删除 Connector

# curl -s -X PUT hadoop001:18083/connectors/connector-mssql-online-1/pause  # curl -s -X PUT hadoop001:18083/connectors/connector-mssql-online-1/resume  # curl -s -X DELETE hadoop001:18083/connectors/connector-mssql-online-1

7.从Kafka中读取变动数据

# 记录表结构的变化,生成规则:你的connect中自定义的  kafka-console-consumer.sh --bootstrap-server hadoop001:9093 --topic test1.t201909262.bak --from-beginning      # 记录数据的变化,生成规则:test1.dbo.t201909262    kafka-console-consumer.sh --bootstrap-server hadoop001:9093 --topic test1.dbo.t201909262 --from-beginning  

这里就是:

kafka-console-consumer.sh --bootstrap-server hadoop001:9093 --topic test1.dbo.t201909262 --from-beginning    kafka-console-consumer.sh --bootstrap-server hadoop001:9093 --topic test1.dbo.t201909262

8. 对表进行 DML语句 操作

新增数据:
然后kafka控制台也就会马上打出日志
在这里插入图片描述
spark 对接kafka 10s一个批次
在这里插入图片描述
然后就会将这个新增的数据插入到MySQL中去
具体的处理逻辑后面再花时间来记录一下

修改和删除也是OK的,就不演示了

有任何问题,欢迎留言一起交流~~

更多好文:https://blog.csdn.net/liuge36

参考文章:
https://docs.confluent.io/current/connect/debezium-connect-sqlserver/index.html#sqlserver-source-connector
https://docs.microsoft.com/en-us/sql/relational-databases/track-changes/track-data-changes-sql-server?view=sql-server-2017
https://blog.csdn.net/qq_19518987/article/details/89329464
http://www.tracefact.net/tech/087.html