Redis高级客户端Lettuce详解

  • 2019 年 10 月 3 日
  • 筆記

前提

Lettuce是一个RedisJava驱动包,初识她的时候是使用RedisTemplate的时候遇到点问题Debug到底层的一些源码,发现spring-data-redis的驱动包在某个版本之后替换为LettuceLettuce翻译为生菜,没错,就是吃的那种生菜,所以它的Logo长这样:

既然能被Spring生态所认可,Lettuce想必有过人之处,于是笔者花时间阅读她的官方文档,整理测试示例,写下这篇文章。编写本文时所使用的版本为Lettuce 5.1.8.RELEASESpringBoot 2.1.8.RELEASEJDK [8,11]超长警告:这篇文章断断续续花了两周完成,超过4万字…..

Lettuce简介

Lettuce是一个高性能基于Java编写的Redis驱动框架,底层集成了Project Reactor提供天然的反应式编程,通信框架集成了Netty使用了非阻塞IO5.x版本之后融合了JDK1.8的异步编程特性,在保证高性能的同时提供了十分丰富易用的API5.1版本的新特性如下:

  • 支持Redis的新增命令ZPOPMIN, ZPOPMAX, BZPOPMIN, BZPOPMAX
  • 支持通过Brave模块跟踪Redis命令执行。
  • 支持Redis Streams
  • 支持异步的主从连接。
  • 支持异步连接池。
  • 新增命令最多执行一次模式(禁止自动重连)。
  • 全局命令超时设置(对异步和反应式命令也有效)。
  • ……等等

注意一点Redis的版本至少需要2.6,当然越高越好,API的兼容性比较强大。

只需要引入单个依赖就可以开始愉快地使用Lettuce

  • Maven
<dependency>      <groupId>io.lettuce</groupId>      <artifactId>lettuce-core</artifactId>      <version>5.1.8.RELEASE</version>  </dependency>
  • Gradle
dependencies {    compile 'io.lettuce:lettuce-core:5.1.8.RELEASE'  }

连接Redis

单机、哨兵、集群模式下连接Redis需要一个统一的标准去表示连接的细节信息,在Lettuce中这个统一的标准是RedisURI。可以通过三种方式构造一个RedisURI实例:

  • 定制的字符串URI语法:
RedisURI uri = RedisURI.create("redis://localhost/");
  • 使用建造器(RedisURI.Builder):
RedisURI uri = RedisURI.builder().withHost("localhost").withPort(6379).build();
  • 直接通过构造函数实例化:
RedisURI uri = new RedisURI("localhost", 6379, 60, TimeUnit.SECONDS);

定制的连接URI语法

  • 单机(前缀为redis://
格式:redis://[password@]host[:port][/databaseNumber][?[timeout=timeout[d|h|m|s|ms|us|ns]]  完整:redis://[email protected]:6379/0?timeout=10s  简单:redis://localhost
  • 单机并且使用SSL(前缀为rediss://) <== 注意后面多了个s
格式:rediss://[password@]host[:port][/databaseNumber][?[timeout=timeout[d|h|m|s|ms|us|ns]]  完整:rediss://[email protected]:6379/0?timeout=10s  简单:rediss://localhost
  • 单机Unix Domain Sockets模式(前缀为redis-socket://
格式:redis-socket://path[?[timeout=timeout[d|h|m|s|ms|us|ns]][&_database=database_]]  完整:redis-socket:///tmp/redis?timeout=10s&_database=0
  • 哨兵(前缀为redis-sentinel://
格式:redis-sentinel://[password@]host[:port][,host2[:port2]][/databaseNumber][?[timeout=timeout[d|h|m|s|ms|us|ns]]#sentinelMasterId  完整:redis-sentinel://[email protected]:6379,127.0.0.1:6380/0?timeout=10s#mymaster

超时时间单位:

  • d 天
  • h 小时
  • m 分钟
  • s 秒钟
  • ms 毫秒
  • us 微秒
  • ns 纳秒

个人建议使用RedisURI提供的建造器,毕竟定制的URI虽然简洁,但是比较容易出现人为错误。鉴于笔者没有SSLUnix Domain Socket的使用场景,下面不对这两种连接方式进行列举。

基本使用

Lettuce使用的时候依赖于四个主要组件:

  • RedisURI:连接信息。
  • RedisClientRedis客户端,特殊地,集群连接有一个定制的RedisClusterClient
  • ConnectionRedis连接,主要是StatefulConnection或者StatefulRedisConnection的子类,连接的类型主要由连接的具体方式(单机、哨兵、集群、订阅发布等等)选定,比较重要。
  • RedisCommandsRedis命令API接口,基本上覆盖了Redis发行版本的所有命令,提供了同步(sync)、异步(async)、反应式(reative)的调用方式,对于使用者而言,会经常跟RedisCommands系列接口打交道。

一个基本使用例子如下:

@Test  public void testSetGet() throws Exception {      RedisURI redisUri = RedisURI.builder()                    // <1> 创建单机连接的连接信息              .withHost("localhost")              .withPort(6379)              .withTimeout(Duration.of(10, ChronoUnit.SECONDS))              .build();      RedisClient redisClient = RedisClient.create(redisUri);   // <2> 创建客户端      StatefulRedisConnection<String, String> connection = redisClient.connect();     // <3> 创建线程安全的连接      RedisCommands<String, String> redisCommands = connection.sync();                // <4> 创建同步命令      SetArgs setArgs = SetArgs.Builder.nx().ex(5);      String result = redisCommands.set("name", "throwable", setArgs);      Assertions.assertThat(result).isEqualToIgnoringCase("OK");      result = redisCommands.get("name");      Assertions.assertThat(result).isEqualTo("throwable");      // ... 其他操作      connection.close();   // <5> 关闭连接      redisClient.shutdown();  // <6> 关闭客户端  }

注意:

  • <5>:关闭连接一般在应用程序停止之前操作,一个应用程序中的一个Redis驱动实例不需要太多的连接(一般情况下只需要一个连接实例就可以,如果有多个连接的需要可以考虑使用连接池,其实Redis目前处理命令的模块是单线程,在客户端多个连接多线程调用理论上没有效果)。
  • <6>:关闭客户端一般应用程序停止之前操作,如果条件允许的话,基于后开先闭原则,客户端关闭应该在连接关闭之后操作。

API

Lettuce主要提供三种API

  • 同步(sync):RedisCommands
  • 异步(async):RedisAsyncCommands
  • 反应式(reactive):RedisReactiveCommands

先准备好一个单机Redis连接备用:

private static StatefulRedisConnection<String, String> CONNECTION;  private static RedisClient CLIENT;    @BeforeClass  public static void beforeClass() {      RedisURI redisUri = RedisURI.builder()              .withHost("localhost")              .withPort(6379)              .withTimeout(Duration.of(10, ChronoUnit.SECONDS))              .build();      CLIENT = RedisClient.create(redisUri);      CONNECTION = CLIENT.connect();  }    @AfterClass  public static void afterClass() throws Exception {      CONNECTION.close();      CLIENT.shutdown();  }

Redis命令API的具体实现可以直接从StatefulRedisConnection实例获取,见其接口定义:

public interface StatefulRedisConnection<K, V> extends StatefulConnection<K, V> {        boolean isMulti();        RedisCommands<K, V> sync();        RedisAsyncCommands<K, V> async();        RedisReactiveCommands<K, V> reactive();  }    

值得注意的是,在不指定编码解码器RedisCodec的前提下,RedisClient创建的StatefulRedisConnection实例一般是泛型实例StatefulRedisConnection<String,String>,也就是所有命令APIKEYVALUE都是String类型,这种使用方式能满足大部分的使用场景。当然,必要的时候可以定制编码解码器RedisCodec<K,V>

同步API

先构建RedisCommands实例:

private static RedisCommands<String, String> COMMAND;    @BeforeClass  public static void beforeClass() {      COMMAND = CONNECTION.sync();  }

基本使用:

@Test  public void testSyncPing() throws Exception {     String pong = COMMAND.ping();     Assertions.assertThat(pong).isEqualToIgnoringCase("PONG");  }      @Test  public void testSyncSetAndGet() throws Exception {      SetArgs setArgs = SetArgs.Builder.nx().ex(5);      COMMAND.set("name", "throwable", setArgs);      String value = COMMAND.get("name");      log.info("Get value: {}", value);  }    // Get value: throwable

同步API在所有命令调用之后会立即返回结果。如果熟悉Jedis的话,RedisCommands的用法其实和它相差不大。

异步API

先构建RedisAsyncCommands实例:

private static RedisAsyncCommands<String, String> ASYNC_COMMAND;    @BeforeClass  public static void beforeClass() {      ASYNC_COMMAND = CONNECTION.async();  }

基本使用:

@Test  public void testAsyncPing() throws Exception {      RedisFuture<String> redisFuture = ASYNC_COMMAND.ping();      log.info("Ping result:{}", redisFuture.get());  }  // Ping result:PONG

RedisAsyncCommands所有方法执行返回结果都是RedisFuture实例,而RedisFuture接口的定义如下:

public interface RedisFuture<V> extends CompletionStage<V>, Future<V> {        String getError();        boolean await(long timeout, TimeUnit unit) throws InterruptedException;  }    

也就是,RedisFuture可以无缝使用Future或者JDK1.8中引入的CompletableFuture提供的方法。举个例子:

@Test  public void testAsyncSetAndGet1() throws Exception {      SetArgs setArgs = SetArgs.Builder.nx().ex(5);      RedisFuture<String> future = ASYNC_COMMAND.set("name", "throwable", setArgs);      // CompletableFuture#thenAccept()      future.thenAccept(value -> log.info("Set命令返回:{}", value));      // Future#get()      future.get();  }  // Set命令返回:OK    @Test  public void testAsyncSetAndGet2() throws Exception {      SetArgs setArgs = SetArgs.Builder.nx().ex(5);      CompletableFuture<Void> result =              (CompletableFuture<Void>) ASYNC_COMMAND.set("name", "throwable", setArgs)                      .thenAcceptBoth(ASYNC_COMMAND.get("name"),                              (s, g) -> {                                  log.info("Set命令返回:{}", s);                                  log.info("Get命令返回:{}", g);                              });      result.get();  }  // Set命令返回:OK  // Get命令返回:throwable

如果能熟练使用CompletableFuture和函数式编程技巧,可以组合多个RedisFuture完成一些列复杂的操作。

反应式API

Lettuce引入的反应式编程框架是Project Reactor,如果没有反应式编程经验可以先自行了解一下Project Reactor

构建RedisReactiveCommands实例:

private static RedisReactiveCommands<String, String> REACTIVE_COMMAND;    @BeforeClass  public static void beforeClass() {      REACTIVE_COMMAND = CONNECTION.reactive();  }

根据Project ReactorRedisReactiveCommands的方法如果返回的结果只包含0或1个元素,那么返回值类型是Mono,如果返回的结果包含0到N(N大于0)个元素,那么返回值是Flux。举个例子:

@Test  public void testReactivePing() throws Exception {      Mono<String> ping = REACTIVE_COMMAND.ping();      ping.subscribe(v -> log.info("Ping result:{}", v));      Thread.sleep(1000);  }  // Ping result:PONG    @Test  public void testReactiveSetAndGet() throws Exception {      SetArgs setArgs = SetArgs.Builder.nx().ex(5);      REACTIVE_COMMAND.set("name", "throwable", setArgs).block();      REACTIVE_COMMAND.get("name").subscribe(value -> log.info("Get命令返回:{}", value));      Thread.sleep(1000);  }  // Get命令返回:throwable    @Test  public void testReactiveSet() throws Exception {      REACTIVE_COMMAND.sadd("food", "bread", "meat", "fish").block();      Flux<String> flux = REACTIVE_COMMAND.smembers("food");      flux.subscribe(log::info);      REACTIVE_COMMAND.srem("food", "bread", "meat", "fish").block();      Thread.sleep(1000);  }  // meat  // bread  // fish

举个更加复杂的例子,包含了事务、函数转换等:

@Test  public void testReactiveFunctional() throws Exception {      REACTIVE_COMMAND.multi().doOnSuccess(r -> {          REACTIVE_COMMAND.set("counter", "1").doOnNext(log::info).subscribe();          REACTIVE_COMMAND.incr("counter").doOnNext(c -> log.info(String.valueOf(c))).subscribe();      }).flatMap(s -> REACTIVE_COMMAND.exec())              .doOnNext(transactionResult -> log.info("Discarded:{}", transactionResult.wasDiscarded()))              .subscribe();      Thread.sleep(1000);  }  // OK  // 2  // Discarded:false

这个方法开启一个事务,先把counter设置为1,再将counter自增1。

发布和订阅

非集群模式下的发布订阅依赖于定制的连接StatefulRedisPubSubConnection,集群模式下的发布订阅依赖于定制的连接StatefulRedisClusterPubSubConnection,两者分别来源于RedisClient#connectPubSub()系列方法和RedisClusterClient#connectPubSub()

  • 非集群模式:
// 可能是单机、普通主从、哨兵等非集群模式的客户端  RedisClient client = ...  StatefulRedisPubSubConnection<String, String> connection = client.connectPubSub();  connection.addListener(new RedisPubSubListener<String, String>() { ... });    // 同步命令  RedisPubSubCommands<String, String> sync = connection.sync();  sync.subscribe("channel");    // 异步命令  RedisPubSubAsyncCommands<String, String> async = connection.async();  RedisFuture<Void> future = async.subscribe("channel");    // 反应式命令  RedisPubSubReactiveCommands<String, String> reactive = connection.reactive();  reactive.subscribe("channel").subscribe();    reactive.observeChannels().doOnNext(patternMessage -> {...}).subscribe()
  • 集群模式:
// 使用方式其实和非集群模式基本一致  RedisClusterClient clusterClient = ...  StatefulRedisClusterPubSubConnection<String, String> connection = clusterClient.connectPubSub();  connection.addListener(new RedisPubSubListener<String, String>() { ... });  RedisPubSubCommands<String, String> sync = connection.sync();  sync.subscribe("channel");  // ...

这里用单机同步命令的模式举一个Redis键空间通知(Redis Keyspace Notifications)的例子:

@Test  public void testSyncKeyspaceNotification() throws Exception {      RedisURI redisUri = RedisURI.builder()              .withHost("localhost")              .withPort(6379)              // 注意这里只能是0号库              .withDatabase(0)              .withTimeout(Duration.of(10, ChronoUnit.SECONDS))              .build();      RedisClient redisClient = RedisClient.create(redisUri);      StatefulRedisConnection<String, String> redisConnection = redisClient.connect();      RedisCommands<String, String> redisCommands = redisConnection.sync();      // 只接收键过期的事件      redisCommands.configSet("notify-keyspace-events", "Ex");      StatefulRedisPubSubConnection<String, String> connection = redisClient.connectPubSub();      connection.addListener(new RedisPubSubAdapter<>() {            @Override          public void psubscribed(String pattern, long count) {              log.info("pattern:{},count:{}", pattern, count);          }            @Override          public void message(String pattern, String channel, String message) {              log.info("pattern:{},channel:{},message:{}", pattern, channel, message);          }      });      RedisPubSubCommands<String, String> commands = connection.sync();      commands.psubscribe("__keyevent@0__:expired");      redisCommands.setex("name", 2, "throwable");      Thread.sleep(10000);      redisConnection.close();      connection.close();      redisClient.shutdown();  }  // pattern:__keyevent@0__:expired,count:1  // pattern:__keyevent@0__:expired,channel:__keyevent@0__:expired,message:name

实际上,在实现RedisPubSubListener的时候可以单独抽离,尽量不要设计成匿名内部类的形式。

事务和批量命令执行

事务相关的命令就是WATCHUNWATCHEXECMULTIDISCARD,在RedisCommands系列接口中有对应的方法。举个例子:

// 同步模式  @Test  public void testSyncMulti() throws Exception {      COMMAND.multi();      COMMAND.setex("name-1", 2, "throwable");      COMMAND.setex("name-2", 2, "doge");      TransactionResult result = COMMAND.exec();      int index = 0;      for (Object r : result) {          log.info("Result-{}:{}", index, r);          index++;      }  }  // Result-0:OK  // Result-1:OK

RedisPipeline也就是管道机制可以理解为把多个命令打包在一次请求发送到Redis服务端,然后Redis服务端把所有的响应结果打包好一次性返回,从而节省不必要的网络资源(最主要是减少网络请求次数)。Redis对于Pipeline机制如何实现并没有明确的规定,也没有提供特殊的命令支持Pipeline机制。Jedis中底层采用BIO(阻塞IO)通讯,所以它的做法是客户端缓存将要发送的命令,最后需要触发然后同步发送一个巨大的命令列表包,再接收和解析一个巨大的响应列表包。PipelineLettuce中对使用者是透明的,由于底层的通讯框架是Netty,所以网络通讯层面的优化Lettuce不需要过多干预,换言之可以这样理解:NettyLettuce从底层实现了RedisPipeline机制。但是,Lettuce的异步API也提供了手动Flush的方法:

@Test  public void testAsyncManualFlush() {      // 取消自动flush      ASYNC_COMMAND.setAutoFlushCommands(false);      List<RedisFuture<?>> redisFutures = Lists.newArrayList();      int count = 5000;      for (int i = 0; i < count; i++) {          String key = "key-" + (i + 1);          String value = "value-" + (i + 1);          redisFutures.add(ASYNC_COMMAND.set(key, value));          redisFutures.add(ASYNC_COMMAND.expire(key, 2));      }      long start = System.currentTimeMillis();      ASYNC_COMMAND.flushCommands();      boolean result = LettuceFutures.awaitAll(10, TimeUnit.SECONDS, redisFutures.toArray(new RedisFuture[0]));      Assertions.assertThat(result).isTrue();      log.info("Lettuce cost:{} ms", System.currentTimeMillis() - start);  }  // Lettuce cost:1302 ms

上面只是从文档看到的一些理论术语,但是现实是骨感的,对比了下JedisPipeline提供的方法,发现了JedisPipeline执行耗时比较低:

@Test  public void testJedisPipeline() throws Exception {      Jedis jedis = new Jedis();      Pipeline pipeline = jedis.pipelined();      int count = 5000;      for (int i = 0; i < count; i++) {          String key = "key-" + (i + 1);          String value = "value-" + (i + 1);          pipeline.set(key, value);          pipeline.expire(key, 2);      }      long start = System.currentTimeMillis();      pipeline.syncAndReturnAll();      log.info("Jedis cost:{} ms", System.currentTimeMillis()  - start);  }  // Jedis cost:9 ms

个人猜测Lettuce可能底层并非合并所有命令一次发送(甚至可能是单条发送),具体可能需要抓包才能定位。依此来看,如果真的有大量执行Redis命令的场景,不妨可以使用JedisPipeline

注意:由上面的测试推断RedisTemplateexecutePipelined()方法是假的Pipeline执行方法,使用RedisTemplate的时候请务必注意这一点。

Lua脚本执行

Lettuce中执行RedisLua命令的同步接口如下:

public interface RedisScriptingCommands<K, V> {        <T> T eval(String var1, ScriptOutputType var2, K... var3);        <T> T eval(String var1, ScriptOutputType var2, K[] var3, V... var4);        <T> T evalsha(String var1, ScriptOutputType var2, K... var3);        <T> T evalsha(String var1, ScriptOutputType var2, K[] var3, V... var4);        List<Boolean> scriptExists(String... var1);        String scriptFlush();        String scriptKill();        String scriptLoad(V var1);        String digest(V var1);  }

异步和反应式的接口方法定义差不多,不同的地方就是返回值类型,一般我们常用的是eval()evalsha()scriptLoad()方法。举个简单的例子:

private static RedisCommands<String, String> COMMANDS;  private static String RAW_LUA = "local key = KEYS[1]n" +          "local value = ARGV[1]n" +          "local timeout = ARGV[2]n" +          "redis.call('SETEX', key, tonumber(timeout), value)n" +          "local result = redis.call('GET', key)n" +          "return result;";  private static AtomicReference<String> LUA_SHA = new AtomicReference<>();    @Test  public void testLua() throws Exception {      LUA_SHA.compareAndSet(null, COMMANDS.scriptLoad(RAW_LUA));      String[] keys = new String[]{"name"};      String[] args = new String[]{"throwable", "5000"};      String result = COMMANDS.evalsha(LUA_SHA.get(), ScriptOutputType.VALUE, keys, args);      log.info("Get value:{}", result);  }  // Get value:throwable

高可用和分片

为了Redis的高可用,一般会采用普通主从(Master/Replica,这里笔者称为普通主从模式,也就是仅仅做了主从复制,故障需要手动切换)、哨兵和集群。普通主从模式可以独立运行,也可以配合哨兵运行,只是哨兵提供自动故障转移和主节点提升功能。普通主从和哨兵都可以使用MasterSlave,通过入参包括RedisClient、编码解码器以及一个或者多个RedisURI获取对应的Connection实例。

这里注意一点MasterSlave中提供的方法如果只要求传入一个RedisURI实例,那么Lettuce会进行拓扑发现机制,自动获取Redis主从节点信息;如果要求传入一个RedisURI集合,那么对于普通主从模式来说所有节点信息是静态的,不会进行发现和更新。

拓扑发现的规则如下:

  • 对于普通主从(Master/Replica)模式,不需要感知RedisURI指向从节点还是主节点,只会进行一次性的拓扑查找所有节点信息,此后节点信息会保存在静态缓存中,不会更新。
  • 对于哨兵模式,会订阅所有哨兵实例并侦听订阅/发布消息以触发拓扑刷新机制,更新缓存的节点信息,也就是哨兵天然就是动态发现节点信息,不支持静态配置。

拓扑发现机制的提供APITopologyProvider,需要了解其原理的可以参考具体的实现。

对于集群(Cluster)模式,Lettuce提供了一套独立的API

另外,如果Lettuce连接面向的是非单个Redis节点,连接实例提供了数据读取节点偏好ReadFrom)设置,可选值有:

  • MASTER:只从Master节点中读取。
  • MASTER_PREFERRED:优先从Master节点中读取。
  • SLAVE_PREFERRED:优先从Slavor节点中读取。
  • SLAVE:只从Slavor节点中读取。
  • NEAREST:使用最近一次连接的Redis实例读取。

普通主从模式

假设现在有三个Redis服务形成树状主从关系如下:

  • 节点一:localhost:6379,角色为Master。
  • 节点二:localhost:6380,角色为Slavor,节点一的从节点。
  • 节点三:localhost:6381,角色为Slavor,节点二的从节点。

首次动态节点发现主从模式的节点信息需要如下构建连接:

@Test  public void testDynamicReplica() throws Exception {      // 这里只需要配置一个节点的连接信息,不一定需要是主节点的信息,从节点也可以      RedisURI uri = RedisURI.builder().withHost("localhost").withPort(6379).build();      RedisClient redisClient = RedisClient.create(uri);      StatefulRedisMasterSlaveConnection<String, String> connection = MasterSlave.connect(redisClient, new Utf8StringCodec(), uri);      // 只从从节点读取数据      connection.setReadFrom(ReadFrom.SLAVE);      // 执行其他Redis命令      connection.close();      redisClient.shutdown();  }

如果需要指定静态的Redis主从节点连接属性,那么可以这样构建连接:

@Test  public void testStaticReplica() throws Exception {      List<RedisURI> uris = new ArrayList<>();      RedisURI uri1 = RedisURI.builder().withHost("localhost").withPort(6379).build();      RedisURI uri2 = RedisURI.builder().withHost("localhost").withPort(6380).build();      RedisURI uri3 = RedisURI.builder().withHost("localhost").withPort(6381).build();      uris.add(uri1);      uris.add(uri2);      uris.add(uri3);      RedisClient redisClient = RedisClient.create();      StatefulRedisMasterSlaveConnection<String, String> connection = MasterSlave.connect(redisClient,              new Utf8StringCodec(), uris);      // 只从主节点读取数据      connection.setReadFrom(ReadFrom.MASTER);      // 执行其他Redis命令      connection.close();      redisClient.shutdown();  }

哨兵模式

由于Lettuce自身提供了哨兵的拓扑发现机制,所以只需要随便配置一个哨兵节点的RedisURI实例即可:

@Test  public void testDynamicSentinel() throws Exception {      RedisURI redisUri = RedisURI.builder()              .withPassword("你的密码")              .withSentinel("localhost", 26379)              .withSentinelMasterId("哨兵Master的ID")              .build();      RedisClient redisClient = RedisClient.create();      StatefulRedisMasterSlaveConnection<String, String> connection = MasterSlave.connect(redisClient, new Utf8StringCodec(), redisUri);      // 只允许从从节点读取数据      connection.setReadFrom(ReadFrom.SLAVE);      RedisCommands<String, String> command = connection.sync();      SetArgs setArgs = SetArgs.Builder.nx().ex(5);      command.set("name", "throwable", setArgs);      String value = command.get("name");      log.info("Get value:{}", value);  }  // Get value:throwable

集群模式

鉴于笔者对Redis集群模式并不熟悉,Cluster模式下的API使用本身就有比较多的限制,所以这里只简单介绍一下怎么用。先说几个特性:

下面的API提供跨槽位(Slot)调用的功能

  • RedisAdvancedClusterCommands
  • RedisAdvancedClusterAsyncCommands
  • RedisAdvancedClusterReactiveCommands

静态节点选择功能:

  • masters:选择所有主节点执行命令。
  • slaves:选择所有从节点执行命令,其实就是只读模式。
  • all nodes:命令可以在所有节点执行。

集群拓扑视图动态更新功能:

  • 手动更新,主动调用RedisClusterClient#reloadPartitions()
  • 后台定时更新。
  • 自适应更新,基于连接断开和MOVED/ASK命令重定向自动更新。

Redis集群搭建详细过程可以参考官方文档,假设已经搭建好集群如下(192.168.56.200是笔者的虚拟机Host):

  • 192.168.56.200:7001 => 主节点,槽位0-5460。
  • 192.168.56.200:7002 => 主节点,槽位5461-10922。
  • 192.168.56.200:7003 => 主节点,槽位10923-16383。
  • 192.168.56.200:7004 => 7001的从节点。
  • 192.168.56.200:7005 => 7002的从节点。
  • 192.168.56.200:7006 => 7003的从节点。

简单的集群连接和使用方式如下:

@Test  public void testSyncCluster(){      RedisURI uri = RedisURI.builder().withHost("192.168.56.200").build();      RedisClusterClient redisClusterClient = RedisClusterClient.create(uri);      StatefulRedisClusterConnection<String, String> connection = redisClusterClient.connect();      RedisAdvancedClusterCommands<String, String> commands = connection.sync();      commands.setex("name",10, "throwable");      String value = commands.get("name");      log.info("Get value:{}", value);  }  // Get value:throwable

节点选择:

@Test  public void testSyncNodeSelection() {      RedisURI uri = RedisURI.builder().withHost("192.168.56.200").withPort(7001).build();      RedisClusterClient redisClusterClient = RedisClusterClient.create(uri);      StatefulRedisClusterConnection<String, String> connection = redisClusterClient.connect();      RedisAdvancedClusterCommands<String, String> commands = connection.sync();  //  commands.all();  // 所有节点  //  commands.masters();  // 主节点      // 从节点只读      NodeSelection<String, String> replicas = commands.slaves();      NodeSelectionCommands<String, String> nodeSelectionCommands = replicas.commands();      // 这里只是演示,一般应该禁用keys *命令      Executions<List<String>> keys = nodeSelectionCommands.keys("*");      keys.forEach(key -> log.info("key: {}", key));      connection.close();      redisClusterClient.shutdown();  }

定时更新集群拓扑视图(每隔十分钟更新一次,这个时间自行考量,不能太频繁):

@Test  public void testPeriodicClusterTopology() throws Exception {      RedisURI uri = RedisURI.builder().withHost("192.168.56.200").withPort(7001).build();      RedisClusterClient redisClusterClient = RedisClusterClient.create(uri);      ClusterTopologyRefreshOptions options = ClusterTopologyRefreshOptions              .builder()              .enablePeriodicRefresh(Duration.of(10, ChronoUnit.MINUTES))              .build();      redisClusterClient.setOptions(ClusterClientOptions.builder().topologyRefreshOptions(options).build());      StatefulRedisClusterConnection<String, String> connection = redisClusterClient.connect();      RedisAdvancedClusterCommands<String, String> commands = connection.sync();      commands.setex("name", 10, "throwable");      String value = commands.get("name");      log.info("Get value:{}", value);      Thread.sleep(Integer.MAX_VALUE);      connection.close();      redisClusterClient.shutdown();  }

自适应更新集群拓扑视图:

@Test  public void testAdaptiveClusterTopology() throws Exception {      RedisURI uri = RedisURI.builder().withHost("192.168.56.200").withPort(7001).build();      RedisClusterClient redisClusterClient = RedisClusterClient.create(uri);      ClusterTopologyRefreshOptions options = ClusterTopologyRefreshOptions.builder()              .enableAdaptiveRefreshTrigger(                      ClusterTopologyRefreshOptions.RefreshTrigger.MOVED_REDIRECT,                      ClusterTopologyRefreshOptions.RefreshTrigger.PERSISTENT_RECONNECTS              )              .adaptiveRefreshTriggersTimeout(Duration.of(30, ChronoUnit.SECONDS))              .build();      redisClusterClient.setOptions(ClusterClientOptions.builder().topologyRefreshOptions(options).build());      StatefulRedisClusterConnection<String, String> connection = redisClusterClient.connect();      RedisAdvancedClusterCommands<String, String> commands = connection.sync();      commands.setex("name", 10, "throwable");      String value = commands.get("name");      log.info("Get value:{}", value);      Thread.sleep(Integer.MAX_VALUE);      connection.close();      redisClusterClient.shutdown();  }

动态命令和自定义命令

自定义命令是Redis命令有限集,不过可以更细粒度指定KEYARGV、命令类型、编码解码器和返回值类型,依赖于dispatch()方法:

// 自定义实现PING方法  @Test  public void testCustomPing() throws Exception {      RedisURI redisUri = RedisURI.builder()              .withHost("localhost")              .withPort(6379)              .withTimeout(Duration.of(10, ChronoUnit.SECONDS))              .build();      RedisClient redisClient = RedisClient.create(redisUri);      StatefulRedisConnection<String, String> connect = redisClient.connect();      RedisCommands<String, String> sync = connect.sync();      RedisCodec<String, String> codec = StringCodec.UTF8;      String result = sync.dispatch(CommandType.PING, new StatusOutput<>(codec));      log.info("PING:{}", result);      connect.close();      redisClient.shutdown();  }  // PING:PONG    // 自定义实现Set方法  @Test  public void testCustomSet() throws Exception {      RedisURI redisUri = RedisURI.builder()              .withHost("localhost")              .withPort(6379)              .withTimeout(Duration.of(10, ChronoUnit.SECONDS))              .build();      RedisClient redisClient = RedisClient.create(redisUri);      StatefulRedisConnection<String, String> connect = redisClient.connect();      RedisCommands<String, String> sync = connect.sync();      RedisCodec<String, String> codec = StringCodec.UTF8;      sync.dispatch(CommandType.SETEX, new StatusOutput<>(codec),              new CommandArgs<>(codec).addKey("name").add(5).addValue("throwable"));      String result = sync.get("name");      log.info("Get value:{}", result);      connect.close();      redisClient.shutdown();  }  // Get value:throwable

动态命令是基于Redis命令有限集,并且通过注解和动态代理完成一些复杂命令组合的实现。主要注解在io.lettuce.core.dynamic.annotation包路径下。简单举个例子:

public interface CustomCommand extends Commands {        // SET [key] [value]      @Command("SET ?0 ?1")      String setKey(String key, String value);        // SET [key] [value]      @Command("SET :key :value")      String setKeyNamed(@Param("key") String key, @Param("value") String value);        // MGET [key1] [key2]      @Command("MGET ?0 ?1")      List<String> mGet(String key1, String key2);      /**       * 方法名作为命令       */      @CommandNaming(strategy = CommandNaming.Strategy.METHOD_NAME)      String mSet(String key1, String value1, String key2, String value2);  }      @Test  public void testCustomDynamicSet() throws Exception {      RedisURI redisUri = RedisURI.builder()              .withHost("localhost")              .withPort(6379)              .withTimeout(Duration.of(10, ChronoUnit.SECONDS))              .build();      RedisClient redisClient = RedisClient.create(redisUri);      StatefulRedisConnection<String, String> connect = redisClient.connect();      RedisCommandFactory commandFactory = new RedisCommandFactory(connect);      CustomCommand commands = commandFactory.getCommands(CustomCommand.class);      commands.setKey("name", "throwable");      commands.setKeyNamed("throwable", "doge");      log.info("MGET ===> " + commands.mGet("name", "throwable"));      commands.mSet("key1", "value1","key2", "value2");      log.info("MGET ===> " + commands.mGet("key1", "key2"));      connect.close();      redisClient.shutdown();  }  // MGET ===> [throwable, doge]  // MGET ===> [value1, value2]

高阶特性

Lettuce有很多高阶使用特性,这里只列举个人认为常用的两点:

  • 配置客户端资源。
  • 使用连接池。

更多其他特性可以自行参看官方文档。

配置客户端资源

客户端资源的设置与Lettuce的性能、并发和事件处理相关。线程池或者线程组相关配置占据客户端资源配置的大部分(EventLoopGroupsEventExecutorGroup),这些线程池或者线程组是连接程序的基础组件。一般情况下,客户端资源应该在多个Redis客户端之间共享,并且在不再使用的时候需要自行关闭。笔者认为,客户端资源是面向Netty的。注意除非特别熟悉或者花长时间去测试调整下面提到的参数,否则在没有经验的前提下凭直觉修改默认值,有可能会踩坑

客户端资源接口是ClientResources,实现类是DefaultClientResources

构建DefaultClientResources实例:

// 默认  ClientResources resources = DefaultClientResources.create();    // 建造器  ClientResources resources = DefaultClientResources.builder()                          .ioThreadPoolSize(4)                          .computationThreadPoolSize(4)                          .build()

使用:

ClientResources resources = DefaultClientResources.create();  // 非集群  RedisClient client = RedisClient.create(resources, uri);  // 集群  RedisClusterClient clusterClient = RedisClusterClient.create(resources, uris);  // ......  client.shutdown();  clusterClient.shutdown();  // 关闭资源  resources.shutdown();

客户端资源基本配置:

属性 描述 默认值
ioThreadPoolSize I/O线程数 Runtime.getRuntime().availableProcessors()
computationThreadPoolSize 任务线程数 Runtime.getRuntime().availableProcessors()

客户端资源高级配置:

属性 描述 默认值
eventLoopGroupProvider EventLoopGroup提供商
eventExecutorGroupProvider EventExecutorGroup提供商
eventBus 事件总线 DefaultEventBus
commandLatencyCollectorOptions 命令延时收集器配置 DefaultCommandLatencyCollectorOptions
commandLatencyCollector 命令延时收集器 DefaultCommandLatencyCollector
commandLatencyPublisherOptions 命令延时发布器配置 DefaultEventPublisherOptions
dnsResolver DNS处理器 JDK或者Netty提供
reconnectDelay 重连延时配置 Delay.exponential()
nettyCustomizer Netty自定义配置器
tracing 轨迹记录器

非集群客户端RedisClient的属性配置:

Redis非集群客户端RedisClient本身提供了配置属性方法:

RedisClient client = RedisClient.create(uri);  client.setOptions(ClientOptions.builder()                         .autoReconnect(false)                         .pingBeforeActivateConnection(true)                         .build());

非集群客户端的配置属性列表:

属性 描述 默认值
pingBeforeActivateConnection 连接激活之前是否执行PING命令 false
autoReconnect 是否自动重连 true
cancelCommandsOnReconnectFailure 重连失败是否拒绝命令执行 false
suspendReconnectOnProtocolFailure 底层协议失败是否挂起重连操作 false
requestQueueSize 请求队列容量 2147483647(Integer#MAX_VALUE)
disconnectedBehavior 失去连接时候的行为 DEFAULT
sslOptions SSL配置
socketOptions Socket配置 10 seconds Connection-Timeout, no keep-alive, no TCP noDelay
timeoutOptions 超时配置
publishOnScheduler 发布反应式信号数据的调度器 使用I/O线程

集群客户端属性配置:

Redis集群客户端RedisClusterClient本身提供了配置属性方法:

RedisClusterClient client = RedisClusterClient.create(uri);  ClusterTopologyRefreshOptions topologyRefreshOptions = ClusterTopologyRefreshOptions.builder()                  .enablePeriodicRefresh(refreshPeriod(10, TimeUnit.MINUTES))                  .enableAllAdaptiveRefreshTriggers()                  .build();    client.setOptions(ClusterClientOptions.builder()                         .topologyRefreshOptions(topologyRefreshOptions)                         .build());

集群客户端的配置属性列表:

属性 描述 默认值
enablePeriodicRefresh 是否允许周期性更新集群拓扑视图 false
refreshPeriod 更新集群拓扑视图周期 60秒
enableAdaptiveRefreshTrigger 设置自适应更新集群拓扑视图触发器RefreshTrigger
adaptiveRefreshTriggersTimeout 自适应更新集群拓扑视图触发器超时设置 30秒
refreshTriggersReconnectAttempts 自适应更新集群拓扑视图触发重连次数 5
dynamicRefreshSources 是否允许动态刷新拓扑资源 true
closeStaleConnections 是否允许关闭陈旧的连接 true
maxRedirects 集群重定向次数上限 5
validateClusterNodeMembership 是否校验集群节点的成员关系 true

使用连接池

引入连接池依赖commons-pool2

<dependency>      <groupId>org.apache.commons</groupId>      <artifactId>commons-pool2</artifactId>      <version>2.7.0</version>  </dependency

基本使用如下:

@Test  public void testUseConnectionPool() throws Exception {      RedisURI redisUri = RedisURI.builder()              .withHost("localhost")              .withPort(6379)              .withTimeout(Duration.of(10, ChronoUnit.SECONDS))              .build();      RedisClient redisClient = RedisClient.create(redisUri);      GenericObjectPoolConfig poolConfig = new GenericObjectPoolConfig();      GenericObjectPool<StatefulRedisConnection<String, String>> pool              = ConnectionPoolSupport.createGenericObjectPool(redisClient::connect, poolConfig);      try (StatefulRedisConnection<String, String> connection = pool.borrowObject()) {          RedisCommands<String, String> command = connection.sync();          SetArgs setArgs = SetArgs.Builder.nx().ex(5);          command.set("name", "throwable", setArgs);          String n = command.get("name");          log.info("Get value:{}", n);      }      pool.close();      redisClient.shutdown();  }

其中,同步连接的池化支持需要用ConnectionPoolSupport,异步连接的池化支持需要用AsyncConnectionPoolSupportLettuce5.1之后才支持)。

几个常见的渐进式删除例子

渐进式删除Hash中的域-属性:

@Test  public void testDelBigHashKey() throws Exception {      // SCAN参数      ScanArgs scanArgs = ScanArgs.Builder.limit(2);      // TEMP游标      ScanCursor cursor = ScanCursor.INITIAL;      // 目标KEY      String key = "BIG_HASH_KEY";      prepareHashTestData(key);      log.info("开始渐进式删除Hash的元素...");      int counter = 0;      do {          MapScanCursor<String, String> result = COMMAND.hscan(key, cursor, scanArgs);          // 重置TEMP游标          cursor = ScanCursor.of(result.getCursor());          cursor.setFinished(result.isFinished());          Collection<String> fields = result.getMap().values();          if (!fields.isEmpty()) {              COMMAND.hdel(key, fields.toArray(new String[0]));          }          counter++;      } while (!(ScanCursor.FINISHED.getCursor().equals(cursor.getCursor()) && ScanCursor.FINISHED.isFinished() == cursor.isFinished()));      log.info("渐进式删除Hash的元素完毕,迭代次数:{} ...", counter);  }    private void prepareHashTestData(String key) throws Exception {      COMMAND.hset(key, "1", "1");      COMMAND.hset(key, "2", "2");      COMMAND.hset(key, "3", "3");      COMMAND.hset(key, "4", "4");      COMMAND.hset(key, "5", "5");  }

渐进式删除集合中的元素:

@Test  public void testDelBigSetKey() throws Exception {      String key = "BIG_SET_KEY";      prepareSetTestData(key);      // SCAN参数      ScanArgs scanArgs = ScanArgs.Builder.limit(2);      // TEMP游标      ScanCursor cursor = ScanCursor.INITIAL;      log.info("开始渐进式删除Set的元素...");      int counter = 0;      do {          ValueScanCursor<String> result = COMMAND.sscan(key, cursor, scanArgs);          // 重置TEMP游标          cursor = ScanCursor.of(result.getCursor());          cursor.setFinished(result.isFinished());          List<String> values = result.getValues();          if (!values.isEmpty()) {              COMMAND.srem(key, values.toArray(new String[0]));          }          counter++;      } while (!(ScanCursor.FINISHED.getCursor().equals(cursor.getCursor()) && ScanCursor.FINISHED.isFinished() == cursor.isFinished()));      log.info("渐进式删除Set的元素完毕,迭代次数:{} ...", counter);  }    private void prepareSetTestData(String key) throws Exception {      COMMAND.sadd(key, "1", "2", "3", "4", "5");  }

渐进式删除有序集合中的元素:

@Test  public void testDelBigZSetKey() throws Exception {      // SCAN参数      ScanArgs scanArgs = ScanArgs.Builder.limit(2);      // TEMP游标      ScanCursor cursor = ScanCursor.INITIAL;      // 目标KEY      String key = "BIG_ZSET_KEY";      prepareZSetTestData(key);      log.info("开始渐进式删除ZSet的元素...");      int counter = 0;      do {          ScoredValueScanCursor<String> result = COMMAND.zscan(key, cursor, scanArgs);          // 重置TEMP游标          cursor = ScanCursor.of(result.getCursor());          cursor.setFinished(result.isFinished());          List<ScoredValue<String>> scoredValues = result.getValues();          if (!scoredValues.isEmpty()) {              COMMAND.zrem(key, scoredValues.stream().map(ScoredValue<String>::getValue).toArray(String[]::new));          }          counter++;      } while (!(ScanCursor.FINISHED.getCursor().equals(cursor.getCursor()) && ScanCursor.FINISHED.isFinished() == cursor.isFinished()));      log.info("渐进式删除ZSet的元素完毕,迭代次数:{} ...", counter);  }    private void prepareZSetTestData(String key) throws Exception {      COMMAND.zadd(key, 0, "1");      COMMAND.zadd(key, 0, "2");      COMMAND.zadd(key, 0, "3");      COMMAND.zadd(key, 0, "4");      COMMAND.zadd(key, 0, "5");  }

在SpringBoot中使用Lettuce

个人认为,spring-data-redis中的API封装并不是很优秀,用起来比较重,不够灵活,这里结合前面的例子和代码,在SpringBoot脚手架项目中配置和整合Lettuce。先引入依赖:

<dependencyManagement>      <dependencies>          <dependency>              <groupId>org.springframework.boot</groupId>              <artifactId>spring-boot-dependencies</artifactId>              <version>2.1.8.RELEASE</version>              <type>pom</type>              <scope>import</scope>          </dependency>      </dependencies>  </dependencyManagement>  <dependencies>      <dependency>          <groupId>org.springframework.boot</groupId>          <artifactId>spring-boot-starter-web</artifactId>      </dependency>              <dependency>          <groupId>io.lettuce</groupId>          <artifactId>lettuce-core</artifactId>          <version>5.1.8.RELEASE</version>      </dependency>      <dependency>          <groupId>org.projectlombok</groupId>          <artifactId>lombok</artifactId>          <version>1.18.10</version>          <scope>provided</scope>      </dependency>  </dependencies>        

一般情况下,每个应用应该使用单个Redis客户端实例和单个连接实例,这里设计一个脚手架,适配单机、普通主从、哨兵和集群四种使用场景。对于客户端资源,采用默认的实现即可。对于Redis的连接属性,比较主要的有HostPortPassword,其他可以暂时忽略。基于约定大于配置的原则,先定制一系列属性配置类(其实有些配置是可以完全共用,但是考虑到要清晰描述类之间的关系,这里拆分多个配置属性类和多个配置方法):

@Data  @ConfigurationProperties(prefix = "lettuce")  public class LettuceProperties {        private LettuceSingleProperties single;      private LettuceReplicaProperties replica;      private LettuceSentinelProperties sentinel;      private LettuceClusterProperties cluster;    }    @Data  public class LettuceSingleProperties {        private String host;      private Integer port;      private String password;  }    @EqualsAndHashCode(callSuper = true)  @Data  public class LettuceReplicaProperties extends LettuceSingleProperties {    }    @EqualsAndHashCode(callSuper = true)  @Data  public class LettuceSentinelProperties extends LettuceSingleProperties {        private String masterId;  }    @EqualsAndHashCode(callSuper = true)  @Data  public class LettuceClusterProperties extends LettuceSingleProperties {    }

配置类如下,主要使用@ConditionalOnProperty做隔离,一般情况下,很少有人会在一个应用使用一种以上的Redis连接场景:

@RequiredArgsConstructor  @Configuration  @ConditionalOnClass(name = "io.lettuce.core.RedisURI")  @EnableConfigurationProperties(value = LettuceProperties.class)  public class LettuceAutoConfiguration {        private final LettuceProperties lettuceProperties;        @Bean(destroyMethod = "shutdown")      public ClientResources clientResources() {          return DefaultClientResources.create();      }        @Bean      @ConditionalOnProperty(name = "lettuce.single.host")      public RedisURI singleRedisUri() {          LettuceSingleProperties singleProperties = lettuceProperties.getSingle();          return RedisURI.builder()                  .withHost(singleProperties.getHost())                  .withPort(singleProperties.getPort())                  .withPassword(singleProperties.getPassword())                  .build();      }        @Bean(destroyMethod = "shutdown")      @ConditionalOnProperty(name = "lettuce.single.host")      public RedisClient singleRedisClient(ClientResources clientResources, @Qualifier("singleRedisUri") RedisURI redisUri) {          return RedisClient.create(clientResources, redisUri);      }        @Bean(destroyMethod = "close")      @ConditionalOnProperty(name = "lettuce.single.host")      public StatefulRedisConnection<String, String> singleRedisConnection(@Qualifier("singleRedisClient") RedisClient singleRedisClient) {          return singleRedisClient.connect();      }        @Bean      @ConditionalOnProperty(name = "lettuce.replica.host")      public RedisURI replicaRedisUri() {          LettuceReplicaProperties replicaProperties = lettuceProperties.getReplica();          return RedisURI.builder()                  .withHost(replicaProperties.getHost())                  .withPort(replicaProperties.getPort())                  .withPassword(replicaProperties.getPassword())                  .build();      }        @Bean(destroyMethod = "shutdown")      @ConditionalOnProperty(name = "lettuce.replica.host")      public RedisClient replicaRedisClient(ClientResources clientResources, @Qualifier("replicaRedisUri") RedisURI redisUri) {          return RedisClient.create(clientResources, redisUri);      }        @Bean(destroyMethod = "close")      @ConditionalOnProperty(name = "lettuce.replica.host")      public StatefulRedisMasterSlaveConnection<String, String> replicaRedisConnection(@Qualifier("replicaRedisClient") RedisClient replicaRedisClient,                                                                                       @Qualifier("replicaRedisUri") RedisURI redisUri) {          return MasterSlave.connect(replicaRedisClient, new Utf8StringCodec(), redisUri);      }        @Bean      @ConditionalOnProperty(name = "lettuce.sentinel.host")      public RedisURI sentinelRedisUri() {          LettuceSentinelProperties sentinelProperties = lettuceProperties.getSentinel();          return RedisURI.builder()                  .withPassword(sentinelProperties.getPassword())                  .withSentinel(sentinelProperties.getHost(), sentinelProperties.getPort())                  .withSentinelMasterId(sentinelProperties.getMasterId())                  .build();      }        @Bean(destroyMethod = "shutdown")      @ConditionalOnProperty(name = "lettuce.sentinel.host")      public RedisClient sentinelRedisClient(ClientResources clientResources, @Qualifier("sentinelRedisUri") RedisURI redisUri) {          return RedisClient.create(clientResources, redisUri);      }        @Bean(destroyMethod = "close")      @ConditionalOnProperty(name = "lettuce.sentinel.host")      public StatefulRedisMasterSlaveConnection<String, String> sentinelRedisConnection(@Qualifier("sentinelRedisClient") RedisClient sentinelRedisClient,                                                                                        @Qualifier("sentinelRedisUri") RedisURI redisUri) {          return MasterSlave.connect(sentinelRedisClient, new Utf8StringCodec(), redisUri);      }        @Bean      @ConditionalOnProperty(name = "lettuce.cluster.host")      public RedisURI clusterRedisUri() {          LettuceClusterProperties clusterProperties = lettuceProperties.getCluster();          return RedisURI.builder()                  .withHost(clusterProperties.getHost())                  .withPort(clusterProperties.getPort())                  .withPassword(clusterProperties.getPassword())                  .build();      }        @Bean(destroyMethod = "shutdown")      @ConditionalOnProperty(name = "lettuce.cluster.host")      public RedisClusterClient redisClusterClient(ClientResources clientResources, @Qualifier("clusterRedisUri") RedisURI redisUri) {          return RedisClusterClient.create(clientResources, redisUri);      }        @Bean(destroyMethod = "close")      @ConditionalOnProperty(name = "lettuce.cluster")      public StatefulRedisClusterConnection<String, String> clusterConnection(RedisClusterClient clusterClient) {          return clusterClient.connect();      }  }

最后为了让IDE识别我们的配置,可以添加IDE亲缘性,/META-INF文件夹下新增一个文件spring-configuration-metadata.json,内容如下:

{    "properties": [      {        "name": "lettuce.single",        "type": "club.throwable.spring.lettuce.LettuceSingleProperties",        "description": "单机配置",        "sourceType": "club.throwable.spring.lettuce.LettuceProperties"      },      {        "name": "lettuce.replica",        "type": "club.throwable.spring.lettuce.LettuceReplicaProperties",        "description": "主从配置",        "sourceType": "club.throwable.spring.lettuce.LettuceProperties"      },      {        "name": "lettuce.sentinel",        "type": "club.throwable.spring.lettuce.LettuceSentinelProperties",        "description": "哨兵配置",        "sourceType": "club.throwable.spring.lettuce.LettuceProperties"      },      {        "name": "lettuce.single",        "type": "club.throwable.spring.lettuce.LettuceClusterProperties",        "description": "集群配置",        "sourceType": "club.throwable.spring.lettuce.LettuceProperties"      }    ]  }

如果想IDE亲缘性做得更好,可以添加/META-INF/additional-spring-configuration-metadata.json进行更多细节定义。简单使用如下:

@Slf4j  @Component  public class RedisCommandLineRunner implements CommandLineRunner {        @Autowired      @Qualifier("singleRedisConnection")      private StatefulRedisConnection<String, String> connection;        @Override      public void run(String... args) throws Exception {          RedisCommands<String, String> redisCommands = connection.sync();          redisCommands.setex("name", 5, "throwable");          log.info("Get value:{}", redisCommands.get("name"));      }  }  // Get value:throwable

小结

本文算是基于Lettuce的官方文档,对它的使用进行全方位的分析,包括主要功能、配置都做了一些示例,限于篇幅部分特性和配置细节没有分析。Lettuce已经被spring-data-redis接纳作为官方的Redis客户端驱动,所以值得信赖,它的一些API设计确实比较合理,扩展性高的同时灵活性也高。个人建议,基于Lettuce包自行添加配置到SpringBoot应用用起来会得心应手,毕竟RedisTemplate实在太笨重,而且还屏蔽了Lettuce一些高级特性和灵活的API

参考资料:

链接

  • Github Page:http://www.throwable.club/2019/09/28/redis-client-driver-lettuce-usage
  • Coding Page:http://throwable.coding.me/2019/09/28/redis-client-driver-lettuce-usage

(本文完 c-14-d e-a-20190928 最近事太多…)