内存中的Buffer和Cache

  • 2019 年 12 月 13 日
  • 筆記

1

free 数据的来源

在正式讲解两个概念前,你可以先想想,你有没有什么途径来进一步了解它们?除了中文翻译直接得到概念,别忘了,Buffer 和 Cache 还是我们用 free 获得的指标。

用 man 命令查询 free 的文档,就可以找到对应指标的详细说明。 比如,我们执行 man free ,就可以看到下面这个界面。

buffers  2              Memory used by kernel buffers (Buffers in /proc/meminfo)  3  4       cache  Memory used by the page cache and slabs (Cached and SReclaimable in /proc/meminfo)  5  6       buff/cache  7              Sum of buffers and cache  

从 free 的手册中,你可以看到 buffer 和 cache 的说明。

  • Buffers 是内核缓冲区用到的内存,对应的是 /proc/meminfo 中的 Buffers 值。
  • Cache 是内核页缓存和 Slab 用到的内存,对应的是 /proc/meminfo 中的 Cached 与 SReclaimable 之和。

2

proc 文件系统

/proc 是 Linux 内核提供的一种特殊文件系统,是用户跟内核交互的接口。比方说,用户可以从 /proc 中查询内核的运行状态和配置选项,查询进程的运行状态、统计数据等,当然,你也可以通过 /proc 来修改内核的配置。

proc 文件系统同时也是很多性能工具的最终数据来源。比如我们刚才看到的 free ,就是通过读取 /proc/meminfo ,得到内存的使用情况。

继续说回 /proc/meminfo,既然 Buffers、Cached、SReclaimable 这几个指标不容易理解,那我们还得继续查 proc 文件系统,获取它们的详细定义。

执行 man proc ,你就可以得到 proc 文件系统的详细文档。注意这个文档比较长,你最好搜索一下(比如搜索 meminfo),以便更快定位到内存部分。

Buffers %lu   2    Relatively temporary storage for raw disk blocks that shouldn't get tremendously large (20MB or so).   3   4Cached %lu   5   In-memory cache for files read from the disk (the page cache).  Doesn't include SwapCached.   6...   7SReclaimable %lu (since Linux 2.6.19)   8    Part of Slab, that might be reclaimed, such as caches.   9  10SUnreclaim %lu (since Linux 2.6.19)  11    Part of Slab, that cannot be reclaimed on memory pressure.  

通过这个文档,我们可以看到:

  • Buffers 是对原始磁盘块的临时存储,也就是用来缓存磁盘的数据,通常不会特别大(20MB 左右)。这样,内核就可以把分散的写集中起来,统一优化磁盘的写入,比如可以把多次小的写合并成单次大的写等等。
  • Cached 是从磁盘读取文件的页缓存,也就是用来缓存从文件读取的数据。这样,下次访问这些文件数据时,就可以直接从内存中快速获取,而不需要再次访问缓慢的磁盘。
  • SReclaimable 是 Slab 的一部分。Slab 包括两部分,其中的可回收部分,用 SReclaimable 记录;而不可回收部分,用 SUnreclaim 记录。

好了,我们终于找到了这三个指标的详细定义。到这里,你是不是长舒一口气,满意地想着,总算弄明白 Buffer 和 Cache 了。不过,知道这个定义就真的理解了吗?这里我给你提了两个问题,你先想想能不能回答出来。

第一个问题,Buffer 的文档没有提到这是磁盘读数据还是写数据的缓存,而在很多网络搜索的结果中都会提到 Buffer 只是对将要写入磁盘数据的缓存。那反过来说,它会不会也缓存从磁盘中读取的数据呢?

第二个问题,文档中提到,Cache 是对从文件读取数据的缓存,那么它是不是也会缓存写文件的数据呢?

为了解答这两个问题,接下来,我将用几个案例来展示, Buffer 和 Cache 在不同场景下的使用情况。

3

案例

  • 机器配置:2 CPU,8GB 内存。
  • 预先安装 sysstat 包,如 apt install sysstat。

之所以要安装 sysstat ,是因为我们要用到 vmstat ,来观察 Buffer 和 Cache 的变化情况。虽然从 /proc/meminfo 里也可以读到相同的结果,但毕竟还是 vmstat 的结果更加直观。

另外,这几个案例使用了 dd 来模拟磁盘和文件的 I/O,所以我们也需要观测 I/O 的变化情况。

上面的工具安装完成后,你可以打开两个终端,连接到 Ubuntu 机器上。

准备环节的最后一步,为了减少缓存的影响,记得在第一个终端中,运行下面的命令来清理系统缓存:

清理文件页、目录项、Inodes等各种缓存

$ echo 3 > /proc/sys/vm/drop_caches

这里的 /proc/sys/vm/drop_caches ,就是通过 proc 文件系统修改内核行为的一个示例,写入 3 表示清理文件页、目录项、Inodes 等各种缓存。

场景 1:磁盘和文件写案例

首先,在第一个终端,运行下面这个 vmstat 命令:

每隔1秒输出1组数据

$ vmstat 12procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----  3r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st  40  0      0 7743608   1112  92168    0    0     0     0   52  152  0  1 100  0  0  50  0      0 7743608   1112  92168    0    0     0     0   36   92  0  0 100  0  0  

输出界面里, 内存部分的 buff 和 cache ,以及 io 部分的 bi 和 bo 就是我们要关注的重点。

  • buff 和 cache 就是我们前面看到的 Buffers 和 Cache,单位是 KB。
  • bi 和 bo 则分别表示块设备读取和写入的大小,单位为块 / 秒。因为 Linux 中块的大小是 1KB,所以这个单位也就等价于 KB/s。

正常情况下,空闲系统中,你应该看到的是,这几个值在多次结果中一直保持不变。

接下来,到第二个终端执行 dd 命令,通过读取随机设备,生成一个 500MB 大小的文件:

$ dd if=/dev/urandom of=/tmp/file bs=1M count=500

然后再回到第一个终端,观察 Buffer 和 Cache 的变化情况:

procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----  r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st                  

通过观察 vmstat 的输出,我们发现,在 dd 命令运行时, Cache 在不停地增长,而 Buffer 基本保持不变。 再进一步观察 I/O 的情况,你会看到:

  • 在 Cache 刚开始增长时,块设备 I/O 很少,bi 只出现了一次 488 KB/s,bo 则只有一次 4KB。而过一段时间后,才会出现大量的块设备写,比如 bo 变成了 122880。
  • 当 dd 命令结束后,Cache 不再增长,但块设备写还会持续一段时间,并且,多次 I/O 写的结果加起来,才是 dd 要写的 500M 的数据。

把这个结果,跟我们刚刚了解到的 Cache 的定义做个对比,你可能会有点晕乎。为什么前面文档上说 Cache 是文件读的页缓存,怎么现在写文件也有它的份?

这个疑问,我们暂且先记下来,接着再来看另一个磁盘写的案例。两个案例结束后,我们再统一进行分析。

不过,对于接下来的案例,我必须强调一点:

下面的命令对环境要求很高,需要你的系统配置多块磁盘,并且磁盘分区 /dev/sdb1 还要处于未使用状态。如果你只有一块磁盘,千万不要尝试,否则将会对你的磁盘分区造成损坏。

如果你的系统符合标准,就可以继续在第二个终端中,运行下面的命令。清理缓存后,向磁盘分区 /dev/sdb1 写入 2GB 的随机数据:

首先清理缓存

$ echo 3 > /proc/sys/vm/drop_caches

然后运行dd命令向磁盘分区/dev/sdb1写入2G数据

$ dd if=/dev/urandom of=/dev/sdb1 bs=1M count=2048

然后,再回到终端一,观察内存和 I/O 的变化情况:

procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----   r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st                

从这里你会看到,虽然同是写数据,写磁盘跟写文件的现象还是不同的。写磁盘时(也就是 bo 大于 0 时),Buffer 和 Cache 都在增长,但显然 Buffer 的增长快得多。

这说明,写磁盘用到了大量的 Buffer,这跟我们在文档中查到的定义是一样的。

对比两个案例,我们发现,写文件时会用到 Cache 缓存数据,而写磁盘则会用到 Buffer 来缓存数据。所以,回到刚刚的问题,虽然文档上只提到,Cache 是文件读的缓存,但实际上,Cache 也会缓存写文件时的数据。

场景 2:磁盘和文件读案例

了解了磁盘和文件写的情况,我们再反过来想,磁盘和文件读的时候,又是怎样的呢?

我们回到第二个终端,运行下面的命令。清理缓存后,从文件 /tmp/file 中,读取数据写入空设备:

首先清理缓存

$ echo 3 > /proc/sys/vm/drop_caches  

运行dd命令读取文件数据

$ dd if=/tmp/file of=/dev/null

然后,再回到终端一,观察内存和 I/O 的变化情况:

procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----   r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st                                                

观察 vmstat 的输出,你会发现读取文件时(也就是 bi 大于 0 时),Buffer 保持不变,而 Cache 则在不停增长。这跟我们查到的定义“Cache 是对文件读的页缓存”是一致的。

那么,磁盘读又是什么情况呢?我们再运行第二个案例来看看。

首先,回到第二个终端,运行下面的命令。清理缓存后,从磁盘分区 /dev/sda1 中读取数据,写入空设备:

首先清理缓存

$ echo 3 > /proc/sys/vm/drop_caches

运行dd命令读取文件

$ dd if=/dev/sda1 of=/dev/null bs=1M count=1024

然后,再回到终端一,观察内存和 I/O 的变化情况:

procs -----------memory---------- ---swap-- -----io---- -system-- ------cpu-----   r  b   swpd   free   buff  cache   si   so    bi    bo   in   cs us sy id wa st            

观察 vmstat 的输出,你会发现读磁盘时(也就是 bi 大于 0 时),Buffer 和 Cache 都在增长,但显然 Buffer 的增长快很多。这说明读磁盘时,数据缓存到了 Buffer 中。

当然,我想,经过上一个场景中两个案例的分析,你自己也可以对比得出这个结论:读文件时数据会缓存到 Cache 中,而读磁盘时数据会缓存到 Buffer 中。

到这里你应该发现了,虽然文档提供了对 Buffer 和 Cache 的说明,但是仍不能覆盖到所有的细节。比如说,今天我们了解到的这两点:

  • Buffer 既可以用作“将要写入磁盘数据的缓存”,也可以用作“从磁盘读取数据的缓存”。
  • Cache 既可以用作“从文件读取数据的页缓存”,也可以用作“写文件的页缓存”。

这样,我们就回答了案例开始前的两个问题。

简单来说,Buffer 是对磁盘数据的缓存,而 Cache 是文件数据的缓存,它们既会用在读请求中,也会用在写请求中。