Rasa 聊天机器人专栏(二):命令行界面
- 2019 年 12 月 12 日
- 筆記

作者 | VK
编辑 | 奇予纪
出品 | 磐创AI团队出品
命令行界面:
备忘单
命令行界面(CLI)为你提供易于记忆的常见任务命令。
使用示例训练数据,操作和配置文件创建新项目
创建新项目
以下命令使用示例训练数据为你建立一个完整的项目。
rasa init
这将创建以下文件:
. ├── __init__.py ├── actions.py ├── config.yml ├── credentials.yml ├── data │ ├── nlu.md │ └── stories.md ├── domain.yml ├── endpoints.yml └── models └── <timestamp>.tar.gz
rasa init
命令将询问你是否要使用此数据训练初始模型。如果你回答否,则models
目录将为空。
随着此项目建立,一些常用命令非常容易记住。要训练模型,输入rasa train
;在命令行上与模型通信,使用rasa shell
;测试模型类型使用rasa test
。
训练模型
主要命令是:
rasa train
该命令训练Rasa模型,该模型结合了Rasa NLU和Rasa Core模型。如果你只想训练NLU或Core模型,你可以运行rasa train nlu
或rasa train core
。但是,如果训练数据和配置没有改变,Rasa将自动跳过训练Core或NLU。
rasa train
将训练好的模型存储在--out
指定的目录中。模型的名称默认是<timestamp>.tar.gz
。如果要为模型命名,可以使用--fixed-model-name
指定名称。
以下参数可用于配置训练过程:
用法: rasa train [-h] [-v] [-vv] [--quiet] [--data DATA [DATA ...]] [-c CONFIG] [-d DOMAIN] [--out OUT] [--augmentation AUGMENTATION] [--debug-plots] [--dump-stories] [--fixed-model-name FIXED_MODEL_NAME] [--force] {core,nlu} ... 位置参数: {core,nlu} core 使用你的故事训练Rasa Core模型 nlu 使用你的NLU数据训练Rasa NLU模型 可选参数: -h, --help 显示帮助消息并退出。 --data DATA [DATA ...] Core和NLU数据文件的路径。(默认:['data']) -c CONFIG, --config CONFIG 机器人的策略和NLU管道配置。(默认:config.yml) -d DOMAIN, --domain DOMAIN 域规范(yml文件)。(默认:domain.yml) --out OUT 存储模型的目录。(默认:models) --augmentation AUGMENTATION 在训练期间使用多少数据扩充。(默认值:50) --debug-plots 如果启用,将创建展示检查点( checkpoints)和它们在文件(`story_blocks_connections.html`)中的故事块之间的联系的图表。(默认:False) --dump-stories 如果启用,将展开的故事保存到文件中。(默认:False) --fixed-model-name FIXED_MODEL_NAME 如果设置,则模型文件/目录的名称将为设置为给定的名称。(默认:None) --force 即使数据没有改变,也强制进行模型训练。(默认值:False) Python日志选项: -v, --verbose 详细输出。将日志记录级别设置为INFO。(默认:None) -vv, --debug 打印大量的调试语句。设置日志记录级别为 DEBUG。(默认:None) --quiet 将日志记录级别设置为WARNING。(默认:None)
注意: 使用rasa train
训练模型时,确保Core和NLU的训练数据存在。如果仅存在一种模型类型的训练数据,则该命令将根据提供的训练文件自动回退到rasa train nlu
或rasa train core
。
交互式学习
与你的助手开始交互式学习会话,运行:
rasa interactive
如果使用--model
参数提供训练模型,则使用提供的模型启动交互式学习过程。如果没有指定模型,且没有其他目录传递给--data
参数,rasa interactive
将使用位于data/
目录中的数据训练一个新的Rasa模型。在训练初始模型之后,交互式学习会话开始。如果训练数据和配置没有改变,将跳过训练。
可以为rasa interactive
设置的参数的完整列表:
用法: rasa interactive [-h] [-v] [-vv] [--quiet] [-m MODEL] [--data DATA [DATA ...]] [--skip-visualization] [--endpoints ENDPOINTS] [-c CONFIG] [-d DOMAIN] [--out OUT] [--augmentation AUGMENTATION] [--debug-plots] [--dump-stories] [--force] {core} ... [model-as-positional-argument] 位置参数: {core} core 启动交互式学习会话模型通过聊天来创建用于Rasa Core模型的新训练数据。使用'RegexInterpreter',即`/ <intent>`输入格式。 model-as-positional-argument 已训练的Rasa模型的路径。如果目录指定,它将使用目录中的最新的模型。(默认:None) 可选参数: -h, --help 显示帮助消息并退出。 -m MODEL, --model MODEL 已训练的Rasa模型的路径。如果目录指定,它将使用目录中的最新的模型。(默认:None) --data DATA [DATA ...] Core和NLU数据文件的路径。(默认:['data']) --skip-visualization 在交互学习期间禁用绘制可视化。(默认值:False) --endpoints ENDPOINTS 模型服务和连接器的配置文件为yml文件。(默认:None) Python日志选项: -v, --verbose 详细输出。将日志记录级别设置为INFO。(默认:None) -vv, --debug 打印大量的调试语句。设置日志记录级别为 DEBUG。(默认:None) --quiet 将日志记录级别设置为WARNING。(默认:None) 训练参数: -c CONFIG, --config CONFIG 机器人的策略和NLU管道配置。(默认:config.yml) -d DOMAIN, --domain DOMAIN 域规范(yml文件)。(默认:domain.yml) --out OUT 存储模型的目录。(默认:models) --augmentation AUGMENTATION 在训练期间使用多少数据扩充。(默认值:50) --debug-plots 如果启用,将创建展示检查点( checkpoints)和它们在文件(`story_blocks_connections.html`)中的故事块之间的联系的图表(默认:False) --dump-stories 如果启用,将展开的故事保存到文件中。(默认值:False) --force 即使数据没有改变,也强制进行模型训练。(默认值:False)
和你的助手交谈
要在命令行上与助手开始聊天,请运行:
rasa shell
应该用于与机器人交互的模型可以由--model
指定。如果仅使用NLU模型启动shell,则rasa shell
允许你获取在命令行上输入的任何文本的意图(intent)和实体。如果你的模型包含经过训练的Core模型,你可以与机器人聊天,并查看机器人预测的下一步操作。如果你已经训练了一个组合的Rasa模型,但是想要查看模型从文本中提取的意图和实体,你可以使用命令rasa shell nlu
。
提高日志记录级别以便调试,请运行:
rasa shell --debug
rasa shell
的完整选项列表:
用法: rasa shell [-h] [-v] [-vv] [--quiet] [-m MODEL] [--log-file LOG_FILE] [--endpoints ENDPOINTS] [-p PORT] [-t AUTH_TOKEN] [--cors [CORS [CORS ...]]] [--enable-api] [--remote-storage REMOTE_STORAGE] [--credentials CREDENTIALS] [--connector CONNECTOR] [--jwt-secret JWT_SECRET] [--jwt-method JWT_METHOD] {nlu} ... [model-as-positional-argument] 位置参数: {nlu} nlu 使用NLU模型解释命令行上的消息。 model-as-positional-argument 已训练的Rasa模型的路径。如果目录指定,它将使用目录中的最新的模型。(默认:None) 可选参数: -h, --help 显示帮助消息并退出。 -m MODEL, --model MODEL 已训练的Rasa模型的路径。如果目录指定,它将使用目录中的最新的模型。(默认:None) --log-file LOG_FILE 将日志存储在指定文件中。(默认:None) --endpoints ENDPOINTS 模型服务和连接器的配置文件为yml文件。(默认:None) Python日志选项: -v, --verbose 详细输出。将日志记录级别设置为INFO。(默认:None) -vv, --debug 打印大量的调试语句。设置日志记录级别为 DEBUG。(默认:None) --quiet 将日志记录级别设置为WARNING。(默认:None) 服务设置: -p PORT, --port PORT 用于运行服务的端口。(默认值:5005) -t AUTH_TOKEN, --auth-token AUTH_TOKEN 启用基于令牌的身份验证,请求需要提供可被接受的令牌。(默认:None) --cors [CORS [CORS ...]] 为传递的来源启用CORS。使用`*`将所有来源添加到白名单。(默认:None) --enable-api 除输入渠道外,还启动Web服务API渠道。(默认值:False) --remote-storage REMOTE_STORAGE 设置Rasa模型所在的远程存储位置,例如在AWS上。(默认:None) 渠道(Channels): --credentials CREDENTIALS 连接器的身份验证凭据为yml文件。(默认:None) --connector CONNECTOR 连接的服务。 (默认: None) JWT身份验证: --jwt-secret JWT_SECRET 非对称JWT方法的公钥或对称方法的共享机密。还请确保使用 --jwt-method 选择签名方法,否则这个参数将被忽略。(默认:None) --jwt-method JWT_METHOD 用于JWT的认证负载签名的方法。(默认:HS256)
启动服务
启动服务运行Rasa模型,请运行:
rasa run
以下参数可用于配置Rasa服务:
用法: rasa run [-h] [-v] [-vv] [--quiet] [-m MODEL] [--log-file LOG_FILE] [--endpoints ENDPOINTS] [-p PORT] [-t AUTH_TOKEN] [--cors [CORS [CORS ...]]] [--enable-api] [--remote-storage REMOTE_STORAGE] [--credentials CREDENTIALS] [--connector CONNECTOR] [--jwt-secret JWT_SECRET] [--jwt-method JWT_METHOD] {actions} ... [model-as-positional-argument] 位置参数: {actions} actions 运行操作服务(action server)。 model-as-positional-argument 已训练的Rasa模型的路径。如果目录指定,它将使用目录中的最新的模型。(默认:None) 可选参数: -h, --help 显示帮助消息并退出。 -m MODEL, --model MODEL 已训练的Rasa模型的路径。如果目录指定,它将使用目录中的最新的模型。(默认:None) --log-file LOG_FILE 将日志存储在指定文件中。(默认:None) --endpoints ENDPOINTS 模型服务和连接器的配置文件为yml文件。(默认:None) Python日志选项: -v, --verbose 详细输出。将日志记录级别设置为INFO。(默认:None) -vv, --debug 打印大量的调试语句。设置日志记录级别为 DEBUG。(默认:None) --quiet 将日志记录级别设置为WARNING。(默认:None) 服务设置: -p PORT, --port PORT 用于运行服务的端口。(默认值:5005) -t AUTH_TOKEN, --auth-token AUTH_TOKEN 启用基于令牌的身份验证,请求需要提供可被接受的令牌。(默认:None) --cors [CORS [CORS ...]] 为传递的来源启用CORS。使用`*`将所有来源添加到白名单。(默认:None) --enable-api 除输入渠道外,还启动Web服务API渠道。(默认值:False) --remote-storage REMOTE_STORAGE 设置Rasa模型所在的远程存储位置,例如在AWS上。(默认:None) 渠道(Channels): --credentials CREDENTIALS 连接器的身份验证凭据为yml文件。(默认:None) --connector CONNECTOR 连接的服务。 (默认: None) JWT身份验证: --jwt-secret JWT_SECRET 非对称JWT方法的公钥或对称方法的共享机密。还请确保使用 --jwt-method 选择签名方法,否则这个参数将被忽略。(默认:None) --jwt-method JWT_METHOD 用于JWT的认证负载签名的方法。(默认:HS256)
有关其他参数的详细信息,请参阅[运行服务]()。有关所有端点的详细文档,请参阅Rasa HTTP API文档。
启动操作服务(Action Server)
运行你的操作服务:
rasa run actions
以下参数可用于调整服务设置:
用法: rasa run actions [-h] [-v] [-vv] [--quiet] [-p PORT] [--cors [CORS [CORS ...]]] [--actions ACTIONS] 可选参数: -h, --help 显示帮助消息并退出 -p PORT, --port PORT 用于运行服务的端口。(默认值:5005) --cors [CORS [CORS ...]] 为传递的来源启用CORS。使用`*`将所有来源添加到白名单。(默认:None) --actions ACTIONS 要加载的操作包的名称。(默认值:None) Python日志选项: -v, --verbose 详细输出。将日志记录级别设置为INFO。(默认:None) -vv, --debug 打印大量的调试语句。设置日志记录级别为 DEBUG。(默认:None) --quiet 将日志记录级别设置为WARNING。(默认:None)
可视化故事
打开浏览器标签页以图的形式显示故事:
rasa visualize
通常,data
目录中的训练故事是可视化的。如果你的故事位于其他地方,则可以使用--stories
指定其位置。
其他参数是:
用法: rasa visualize [-h] [-v] [-vv] [--quiet] [-d DOMAIN] [-s STORIES] [-c CONFIG] [--out OUT] [--max-history MAX_HISTORY] [-u NLU] 可选参数: -h, --help 显示帮助消息并退出。 -d DOMAIN, --domain DOMAIN 域规范(yml文件)。(默认:domain.yml) -s STORIES, --stories STORIES 包含你的训练故事的文件或文件夹。(默认:data) -c CONFIG, --config CONFIG 机器人的策略和NLU管道配置。(默认:config.yml) --out OUT 输出路径的文件名,例如'graph.html'。(默认: graph.html) --max-history MAX_HISTORY 在输出图合并路径时要考虑的最大历史记录。(默认:2) -u NLU, --nlu NLU 包含NLU数据的文件或文件夹,用于将示例消息插入图表中。(默认:None) Python日志选项: -v, --verbose 详细输出。将日志记录级别设置为INFO。(默认:None) -vv, --debug 打印大量的调试语句。设置日志记录级别为 DEBUG。(默认:None) --quiet 将日志记录级别设置为WARNING。(默认:None)
在测试数据上评估模型
要在测试数据上评估模型,请运行:
rasa test
使用--model
指定要测试的模型。查看有关[评估NLU模型]和[评估Core模型]的更多详细信息。
以下参数可用于rasa test
:
用法: rasa test [-h] [-v] [-vv] [--quiet] [-m MODEL] [-s STORIES] [--max-stories MAX_STORIES] [--e2e] [--endpoints ENDPOINTS] [--fail-on-prediction-errors] [--url URL] [--evaluate-model-directory] [-u NLU] [--out OUT] [--report [REPORT]] [--successes [SUCCESSES]] [--errors ERRORS] [--histogram HISTOGRAM] [--confmat CONFMAT] [-c CONFIG [CONFIG ...]] [--cross-validation] [-f FOLDS] [-r RUNS] [-p PERCENTAGES [PERCENTAGES ...]] {core,nlu} ... 位置参数: {core,nlu} core 使用你的测试故事测试Rasa Core模型。 nlu 使用测试NLU数据测试Rasa NLU模型。 可选参数: -h, --help 显示帮助消息并退出。 -m MODEL, --model MODEL 已训练的Rasa模型的路径。如果目录指定,它将使用目录中的最新的模型。(默认:None) Python日志选项: -v, --verbose 详细输出。将日志记录级别设置为INFO。(默认:None) -vv, --debug 打印大量的调试语句。设置日志记录级别为 DEBUG。(默认:None) --quiet 将日志记录级别设置为WARNING。(默认:None) Core测试参数: -s STORIES, --stories STORIES 包含测试故事的文件或文件夹。(默认:data) --max-stories MAX_STORIES 要测试的最大故事数。(默认:None) --e2e, --end-to-end 对联合操作和意图预测进行端到端评估。需要端到端的故事文件格式。(默认值:False) -endpoints ENDPOINTS 模型服务和连接器的配置文件为yml文件。(默认:None) --fail-on-prediction-errors 如果遇到预测错误,则会出现异常抛出。这可用于在测试期间验证故事。(默认值:False) --url URL 如果提供,则从URL下载故事文件并训练就可以了。通过发送GET请求到提供的URL获取数据。(默认:None) --evaluate-model-directory 通过`rasa train core --config <config-1> <config-2>`设置评估已训练的模型。所有在提供的目录中模型被评估和互相比较。(默认值:False) NUL测试参数: -u NLU, --nlu NLU 包含NLU数据的文件或文件夹。(默认:data) --out OUT 在评估期间创建的任何文件的输出路径。(默认:results) --report [REPORT] 用于保存意图/实体度量报告的输出路径。(默认:None) --successes [SUCCESSES] 保存成功预测的输出路径。(默认:None) --errors ERRORS 保存模型错误的输出路径。(默认:errors.json) --histogram HISTOGRAM 置信直方图的输出路径。(默认:hist.png) --confmat CONFMAT 混淆矩阵图的输出路径。(默认:confmat.png) -c CONFIG [CONFIG ...], --config CONFIG [CONFIG ...] 模型配置文件。如果传递单个文件并选择交叉验证模式,交叉验证执行,如果传递多个配置或配置的文件夹,模型将直接被训练和比较。(默认:None)
训练和测试数据拆分
要创建NLU数据的拆分,请运行:
rasa data split nlu
你可以使用以下参数指定训练数据,百分比和输出目录:
用法: rasa data split nlu [-h] [-v] [-vv] [--quiet] [-u NLU] [--training-fraction TRAINING_FRACTION] [--out OUT] 可选参数: -h, --help 显示帮助消息并退出。 -u NLU, --nlu NLU 包含NLU数据的文件或文件夹。(默认:data) --training-fraction TRAINING_FRACTION 训练数据所占百分比。(默认值:0.8) --out OUT 存储拆分文件的目录。(默认值:train_test_split) Python日志选项: -v, --verbose 详细输出。将日志记录级别设置为INFO。(默认:None) -vv, --debug 打印大量的调试语句。设置日志记录级别为 DEBUG。(默认:None) --quiet 将日志记录级别设置为WARNING。(默认:None)
此命令将尝试在训练和测试中保持意图的比例相同。
在Markdown和JSON之间转换数据
要将NLU数据从LUIS数据格式,WIT数据格式,Dialogflow数据格式,JSON或Markdown转换为JSON或Markdown,请运行:
rasa data convert nlu
你可以使用以下参数指定输入文件,输出文件和输出格式:
用法: rasa data convert nlu [-h] [-v] [-vv] [--quiet] --data DATA --out OUT [-l LANGUAGE] -f {json,md} 可选参数: -h, --help 显示帮助消息并退出。 --data DATA 包含Rasa NLU数据的文件或目录的路径。(默认 None) --out OUT 保存Rasa格式的训练数据的文件。(默认 None) -l LANGUAGE, --language LANGUAGE 数据的语种。(默认: en) -f {json,md}, --format {json,md} 训练数据转换的输出格式。 (默认: None) Python日志选项: -v, --verbose 详细输出。将日志记录级别设置为INFO。(默认:None) -vv, --debug 打印大量的调试语句。设置日志记录级别为 DEBUG。(默认:None) --quiet 将日志记录级别设置为WARNING。(默认:None) ``` ### 启动Rasa X Rasa X是一个工具,可帮助你构建,改进和部署由Rasa框架提供支持的AI助手。你可以在[此处]()找到有关它的更多信息。
你可以通过执行下面的命令来本地启动Rasa X:
rasa x
为了能够启动Rasa X,你需要安装Rasa X(可在此处,你需要进入一个Rasa项目。
注意 默认情况下,Rasa X在端口5002上运行。使用参数--rasa-x-port
可以将其更改为任何其他端口。
以下参数可用于rasa x
用法: rasa x [-h] [-v] [-vv] [--quiet] [-m MODEL] [--data DATA] [--no-prompt] [--production] [--rasa-x-port RASA_X_PORT] [--log-file LOG_FILE] [--endpoints ENDPOINTS] [-p PORT] [-t AUTH_TOKEN] [--cors [CORS [CORS ...]]] [--enable-api] [--remote-storage REMOTE_STORAGE] [--credentials CREDENTIALS] [--connector CONNECTOR] [--jwt-secret JWT_SECRET] [--jwt-method JWT_METHOD] 可选参数: -h, --help 显示帮助消息并退出。 -m MODEL, --model MODEL 已训练的Rasa模型的路径。如果目录指定,它将使用目录中的最新的模型。(默认:None) --data DATA [DATA ...] Core和NLU数据文件的路径。(默认:data) --no-prompt 自动提示或默认选项提示和忽略警告。(默认: False) --production 在生产环境中运行Rasa X。(默认:False) --rasa-x-port RASA_X_PORT 用于运行Rasa X服务的端口。(默认值:5002) --log-file LOG_FILE 将日志存储在指定文件中。(默认:None) --endpoints ENDPOINTS 模型服务和连接器的配置文件为yml文件。(默认:None) Python日志选项: -v, --verbose 详细输出。将日志记录级别设置为INFO。(默认:None) -vv, --debug 打印大量的调试语句。设置日志记录级别为 DEBUG。(默认:None) --quiet 将日志记录级别设置为WARNING。(默认:None) 服务设置: -p PORT, --port PORT 用于运行服务的端口。(默认值:5005) -t AUTH_TOKEN, --auth-token AUTH_TOKEN 启用基于令牌的身份验证,请求需要提供可被接受的令牌。(默认:None) --cors [CORS [CORS ...]] 为传递的来源启用CORS。使用`*`将所有来源添加到白名单。(默认:None) --enable-api 除输入渠道外,还启动Web服务API渠道。(默认值:False) --remote-storage REMOTE_STORAGE 设置Rasa模型所在的远程存储位置,例如在AWS上。(默认:None) 渠道(Channels): --credentials CREDENTIALS 连接器的身份验证凭据为yml文件。(默认:None) --connector CONNECTOR 连接的服务。 (默认: None) JWT身份验证: --jwt-secret JWT_SECRET 非对称JWT方法的公钥或对称方法的共享机密。还请确保使用 --jwt-method 选择签名方法,否则这个参数将被忽略。(默认:None) --jwt-method JWT_METHOD 用于JWT的认证负载签名的方法。(默认:HS256)