TensorFlow2.0代码实战专栏(六):使用低级方法来构建神经网络以便更好地理解

  • 2019 年 12 月 12 日
  • 筆記

作者 | Aymeric Damien

编辑 | 奇予纪

出品 | 磐创AI团队

原项目 | https://github.com/aymericdamien/TensorFlow-Examples/

使用TensorFlow v2构建一个两层隐藏层完全连接的神经网络(多层感知器)。

这个例子使用低级方法来更好地理解构建神经网络和训练过程背后的所有机制。

神经网络概述

MNIST 数据集概述

此示例使用手写数字的MNIST数据集。该数据集包含60,000个用于训练的示例和10,000个用于测试的示例。这些数字已经过尺寸标准化并位于图像中心,图像是固定大小(28×28像素),值为0到255。

在此示例中,每个图像将转换为float32并归一化为[0,1],并展平为784个特征的一维数组(28 * 28)

更多信息请查看链接: http://yann.lecun.com/exdb/mnist/

from __future__ import absolute_import, division, print_function    import tensorflow as tf  import numpy as np  
# MNIST 数据集参数  num_classes = 10 # 所有类别(数字 0-9)  num_features = 784 # 数据特征数目 (图像形状: 28*28)    # 训练参数  learning_rate = 0.001  training_steps = 3000  batch_size = 256  display_step = 100    # 网络参数  n_hidden_1 = 128 # 第一层隐含层神经元的数目  n_hidden_2 = 256 # 第二层隐含层神经元的数目  
# 准备MNIST数据  from tensorflow.keras.datasets import mnist  (x_train, y_train), (x_test, y_test) = mnist.load_data()  # 转化为float32  x_train, x_test = np.array(x_train, np.float32), np.array(x_test, np.float32)  # 将每张图像展平为具有784个特征的一维向量(28 * 28)  x_train, x_test = x_train.reshape([-1, num_features]), x_test.reshape([-1, num_features])  # 将图像值从[0,255]归一化到[0,1]  x_train, x_test = x_train / 255., x_test / 255.  
# 使用tf.data API对数据进行随机排序和批处理  train_data = tf.data.Dataset.from_tensor_slices((x_train, y_train))  train_data = train_data.repeat().shuffle(5000).batch(batch_size).prefetch(1)  
# 存储层的权重和偏置    # 随机值生成器初始化权重  random_normal = tf.initializers.RandomNormal()    weights = {      'h1': tf.Variable(random_normal([num_features, n_hidden_1])),      'h2': tf.Variable(random_normal([n_hidden_1, n_hidden_2])),      'out': tf.Variable(random_normal([n_hidden_2, num_classes]))  }  biases = {      'b1': tf.Variable(tf.zeros([n_hidden_1])),      'b2': tf.Variable(tf.zeros([n_hidden_2])),      'out': tf.Variable(tf.zeros([num_classes]))  }  
# 创建模型  def neural_net(x):      # Hidden fully connected layer with 128 neurons.      # 具有128个神经元的隐含完全连接层      layer_1 = tf.add(tf.matmul(x, weights['h1']), biases['b1'])      # Apply sigmoid to layer_1 output for non-linearity.      # 将sigmoid用于layer_1输出以获得非线性      layer_1 = tf.nn.sigmoid(layer_1)        # 具有128个神经元的隐含完全连接层      layer_2 = tf.add(tf.matmul(layer_1, weights['h2']), biases['b2'])      # 将sigmoid用于layer_2输出以获得非线性      layer_2 = tf.nn.sigmoid(layer_2)        # 输出完全连接层,每一个神经元代表一个类别      out_layer = tf.matmul(layer_2, weights['out']) + biases['out']      # 应用softmax将输出标准化为概率分布      return tf.nn.softmax(out_layer)  
# 交叉熵损失函数  def cross_entropy(y_pred, y_true):      # 将标签编码为独热向量      y_true = tf.one_hot(y_true, depth=num_classes)      # 将预测值限制在一个范围之内以避免log(0)错误      y_pred = tf.clip_by_value(y_pred, 1e-9, 1.)      # 计算交叉熵      return tf.reduce_mean(-tf.reduce_sum(y_true * tf.math.log(y_pred)))    #  准确率评估  def accuracy(y_pred, y_true):       # 预测类是预测向量中最高分的索引(即argmax)      correct_prediction = tf.equal(tf.argmax(y_pred, 1), tf.cast(y_true, tf.int64))      return tf.reduce_mean(tf.cast(correct_prediction, tf.float32), axis=-1)    # 随机梯度下降优化器  optimizer = tf.optimizers.SGD(learning_rate)  
# 优化过程  def run_optimization(x, y):      # 将计算封装在GradientTape中以实现自动微分      with tf.GradientTape() as g:          pred = neural_net(x)          loss = cross_entropy(pred, y)        # 要更新的变量,即可训练的变量      trainable_variables = weights.values() + biases.values()        # 计算梯度      gradients = g.gradient(loss, trainable_variables)        # 按gradients更新 W 和 b      optimizer.apply_gradients(zip(gradients, trainable_variables))  
# 针对给定步骤数进行训练  for step, (batch_x, batch_y) in enumerate(train_data.take(training_steps), 1):      # 运行优化以更新W和b值      run_optimization(batch_x, batch_y)        if step % display_step == 0:          pred = neural_net(batch_x)          loss = cross_entropy(pred, batch_y)          acc = accuracy(pred, batch_y)          print("step: %i, loss: %f, accuracy: %f" % (step, loss, acc))  

output:

step: 100, loss: 567.292969, accuracy: 0.136719  step: 200, loss: 398.614929, accuracy: 0.562500  step: 300, loss: 226.743774, accuracy: 0.753906  step: 400, loss: 193.384521, accuracy: 0.777344  step: 500, loss: 138.649963, accuracy: 0.886719  step: 600, loss: 109.713669, accuracy: 0.898438  step: 700, loss: 90.397217, accuracy: 0.906250  step: 800, loss: 104.545380, accuracy: 0.894531  step: 900, loss: 94.204697, accuracy: 0.890625  step: 1000, loss: 81.660645, accuracy: 0.906250  step: 1100, loss: 81.237137, accuracy: 0.902344  step: 1200, loss: 65.776703, accuracy: 0.925781  step: 1300, loss: 94.195862, accuracy: 0.910156  step: 1400, loss: 79.425507, accuracy: 0.917969  step: 1500, loss: 93.508163, accuracy: 0.914062  step: 1600, loss: 88.912506, accuracy: 0.917969  step: 1700, loss: 79.033607, accuracy: 0.929688  step: 1800, loss: 65.788315, accuracy: 0.898438  step: 1900, loss: 73.462387, accuracy: 0.937500  step: 2000, loss: 59.309540, accuracy: 0.917969  step: 2100, loss: 67.014008, accuracy: 0.917969  step: 2200, loss: 48.297115, accuracy: 0.949219  step: 2300, loss: 64.523148, accuracy: 0.910156  step: 2400, loss: 72.989517, accuracy: 0.925781  step: 2500, loss: 57.588585, accuracy: 0.929688  step: 2600, loss: 44.957100, accuracy: 0.960938  step: 2700, loss: 59.788242, accuracy: 0.937500  step: 2800, loss: 63.581337, accuracy: 0.937500  step: 2900, loss: 53.471252, accuracy: 0.941406  step: 3000, loss: 43.869728, accuracy: 0.949219  
# 在验证集上测试模型  pred = neural_net(x_test)  print("Test Accuracy: %f" % accuracy(pred, y_test))  
# 可视化预测  import matplotlib.pyplot as plt    # 从验证集中预测5张图像  n_images = 5  test_images = x_test[:n_images]  predictions = neural_net(test_images)    # 显示图片和模型预测结果  for i in range(n_images):      plt.imshow(np.reshape(test_images[i], [28, 28]), cmap='gray')      plt.show()      print("Model prediction: %i" % np.argmax(predictions.numpy()[i]))  

output:

Model prediction: 7

Model prediction:2

Model prediction: 1

Model prediction: 0

Model prediction: 4