Kafka源码分析及图解原理之Producer端

  • 2019 年 10 月 3 日
  • 筆記

一.前言

  任何消息队列都是万变不离其宗都是3部分,消息生产者(Producer)、消息消费者(Consumer)和服务载体(在Kafka中用Broker指代)。那么本篇主要讲解Producer端,会有适当的图解帮助理解底层原理。

 

一.开发应用

  首先介绍一下开发应用,如何构建一个KafkaProducer及使用,还有一些重要参数的简介。

1.1 一个栗子

 1 /**   2  * Kafka Producer Demo实例类。   3  *   4  * @author GrimMjx   5  */   6 public class ProducerDemo {   7     public static void main(String[] args) throws ExecutionException, InterruptedException {   8         Properties prop = new Properties();   9         prop.put("client.id", "DemoProducer");  10  11         // 以下三个参数必须指定  12         // 用于创建与Kafka broker服务器的连接,集群的话则用逗号分隔  13         prop.put("bootstrap.servers", "localhost:9092");  14         // 消息的key序列化方式  15         prop.put("key.serializer", "org.apache.kafka.common.serialization.StringSerializer");  16         // 消息的value序列化方式  17         prop.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");  18  19         // 以下参数为可配置选项  20         prop.put("acks", "-1");  21         prop.put("retries", "3");  22         prop.put("batch.size", "323840");  23         prop.put("linger.ms", "10");  24         prop.put("buffer.memory", "33554432");  25         prop.put("max.block.ms", "3000");  26  27         KafkaProducer<String, String> producer = new KafkaProducer<String, String>(prop);  28         try {  29             // 异步发送,继续发送消息不用等待。当有结果返回时,callback会被通知执行  30             producer.send(new ProducerRecord<String, String>("test", "key1", "value1"),  31                     new Callback() {  32                         // 返回结果RecordMetadata记录元数据包括了which partition的which offset  33                         public void onCompletion(RecordMetadata metadata, Exception e) {  34                             // 发送成功  35                             if (e == null) {  36                                 System.out.println("The offset of the record we just sent is: " + metadata.offset());  37  38                                 // 发送失败  39                             } else {  40                                 if (e instanceof RetriableException) {  41                                     // 处理可重试的异常,比如分区leader副本不可用  42                                     // 一般用retries参数来设置重置,毕竟这里也没有什么其他能做的,也是同样的重试发送消息  43                                 } else {  44                                     // 处理不可重试异常  45                                 }  46                             }  47                         }  48                     }  49             );  50  51             // 同步发送,send方法返回Future,然后get。在没有返回结果一直阻塞  52             producer.send(new ProducerRecord<String, String>("test", "key1", "value1")).get();  53  54         } finally {  55             // producer运行的时候占用系统额外资源,最后一定要关闭  56             producer.close();  57         }  58     }  59 }

  注释已经写得十分详细了,参数的下面会说,这里就只说一下异步发送和同步发送。我们先看下KafkaProducer.send方法,可以看到返回的是一个Future,那么如何实现同步阻塞和异步非阻塞呢?

  • 同步阻塞:send方法返回Future,然后get。在没有返回结果一直阻塞,无限等待
  • 异步非阻塞:send方法提供callback,调用send方法后可以继续发送消息不用等待。当有结果返回时,callback会被通知执行

1.2 重要参数

  这里分析一下broker端的重要参数,前3个是必要参数。Kafka的文档真的很吊,可以看这个类,每个参数和注释都解释的十分详细:org.apache.kafka.clients.producer.ProducerConfig

  • bootstrap.server(必要):broker服务器列表,如果集群的机器很多,不用全配,producer可以发现集群中所有broker
  • key.serializer/value.serializer(必要):key和value的序列化方式。这两个参数都必须是全限定类名,可以自定义拓展。
  • acks:有3个值,0、1和all(-1)
  • buffer.memory:producer启动会创建一个内存缓冲区保存待发送的消息,这部分的内存大小就是这个参数来控制的
  • commpression.type:压缩算法的选择,目前有GZIP、Snappy和LZ4。目前结合LZ4性能最好
  • retries:重试次数,0.11.0.0版本之前可能导致消息重发
  • batch.size:相同分区多条消息集合叫batch,当batch满了则发送给broker
  • linger.ms:难道batch没满就不发了么?当然不是,不满则等linger.ms时间再发。延时权衡行为
  • max.request.size:控制发送请求的大小
  • request.timeout.ms:超过时间则会在回调函数抛出TimeoutException异常
  • partitioner.class:分区机制,可自定义,默认分区器的处理是:有key则用murmur2算法计算key的哈希值,对总分区取模算出分区号,无key则轮询
  • enable.idempotence:Apache Kafka 0.11.0.0版本用于实现EOS的利器

二.源码分析及图解原理

2.1 RecordAccumulator

  上面介绍的参数中buffer.memory是缓冲区的大小,RecordAccmulator就是承担了缓冲区的角色。默认是32MB。

  还有上面介绍的参数中batch.size提到了batch的概念,在kafka producer中,消息不是一条一条发给broker的,而是多条消息组成一个ProducerBatch,然后由Sender一次性发出去,这里的batch.size并不是消息的条数(凑满多少条即发送),而是一个大小。默认是16KB,可以根据具体情况来进行优化。

  在RecordAccumulator中,最核心的参数就是:

private final ConcurrentMap<TopicPartition, Deque<ProducerBatch>> batches;

  它是一个ConcurrentMap,key是TopicPartition类,代表一个topic的一个partition。value是一个包含ProducerBatch的双端队列。等待Sender线程发送给broker。画张图来看下:

  再从源码角度来看如何添加到缓冲区队列里的,主要看这个方法:org.apache.kafka.clients.producer.internals.RecordAccumulator#append:

  注释写的十分详细了,这里需要思考一点,为什么分配内存的代码没有放在synchronized同步块里?看起来这里很多余,导致下面的synchronized同步块中还要tryAppend一下,因为这时候可能其他线程已经创建好RecordBatch了。造成多余的内存申请。但是仔细想想,如果把分配内存放在synchronized同步块会有什么问题?

  内存申请不到线程会一直等待,如果放在同步块中会造成一直不释放Deque队列的锁,那其他线程将无法对Deque队列进行线程安全的同步操作。那不是走远了?

 1 /**   2  * Add a record to the accumulator, return the append result   3  * <p>   4  * The append result will contain the future metadata, and flag for whether the appended batch is full or a new batch is created   5  * <p>   6  *   7  * @param tp The topic/partition to which this record is being sent   8  * @param timestamp The timestamp of the record   9  * @param key The key for the record  10  * @param value The value for the record  11  * @param headers the Headers for the record  12  * @param callback The user-supplied callback to execute when the request is complete  13  * @param maxTimeToBlock The maximum time in milliseconds to block for buffer memory to be available  14  */  15 public RecordAppendResult append(TopicPartition tp,  16                                  long timestamp,  17                                  byte[] key,  18                                  byte[] value,  19                                  Header[] headers,  20                                  Callback callback,  21                                  long maxTimeToBlock) throws InterruptedException {  22     // We keep track of the number of appending thread to make sure we do not miss batches in  23     // abortIncompleteBatches().  24     appendsInProgress.incrementAndGet();  25     ByteBuffer buffer = null;  26     if (headers == null) headers = Record.EMPTY_HEADERS;  27     try {  28         // check if we have an in-progress batch  29         // 其实就是一个putIfAbsent操作的方法,不展开分析  30         Deque<ProducerBatch> dq = getOrCreateDeque(tp);  31         // batches是线程安全的,但是Deque不是线程安全的  32         // 已有在处理中的batch  33         synchronized (dq) {  34             if (closed)  35                 throw new IllegalStateException("Cannot send after the producer is closed.");  36             RecordAppendResult appendResult = tryAppend(timestamp, key, value, headers, callback, dq);  37             if (appendResult != null)  38                 return appendResult;  39         }  40  41         // we don't have an in-progress record batch try to allocate a new batch  42         // 创建一个新的ProducerBatch  43         byte maxUsableMagic = apiVersions.maxUsableProduceMagic();  44         // 分配一个内存  45         int size = Math.max(this.batchSize, AbstractRecords.estimateSizeInBytesUpperBound(maxUsableMagic, compression, key, value, headers));  46         log.trace("Allocating a new {} byte message buffer for topic {} partition {}", size, tp.topic(), tp.partition());  47         // 申请不到内存  48         buffer = free.allocate(size, maxTimeToBlock);  49         synchronized (dq) {  50             // Need to check if producer is closed again after grabbing the dequeue lock.  51             if (closed)  52                 throw new IllegalStateException("Cannot send after the producer is closed.");  53  54             // 再次尝试添加,因为分配内存的那段代码并不在synchronized块中  55             // 有可能这时候其他线程已经创建好RecordBatch了,finally会把分配好的内存还回去  56             RecordAppendResult appendResult = tryAppend(timestamp, key, value, headers, callback, dq);  57             if (appendResult != null) {  58                 // 作者自己都说了,希望不要总是发生,多个线程都去申请内存,到时候还不是要还回去?  59                 // Somebody else found us a batch, return the one we waited for! Hopefully this doesn't happen often...  60                 return appendResult;  61             }  62  63             // 创建ProducerBatch  64             MemoryRecordsBuilder recordsBuilder = recordsBuilder(buffer, maxUsableMagic);  65             ProducerBatch batch = new ProducerBatch(tp, recordsBuilder, time.milliseconds());  66             FutureRecordMetadata future = Utils.notNull(batch.tryAppend(timestamp, key, value, headers, callback, time.milliseconds()));  67  68             dq.addLast(batch);  69             // incomplete是一个Set集合,存放不完整的batch  70             incomplete.add(batch);  71  72             // Don't deallocate this buffer in the finally block as it's being used in the record batch  73             buffer = null;  74  75             // 返回记录添加结果类  76             return new RecordAppendResult(future, dq.size() > 1 || batch.isFull(), true);  77         }  78     } finally {  79         // 释放要还的内存  80         if (buffer != null)  81             free.deallocate(buffer);  82         appendsInProgress.decrementAndGet();  83     }  84 }

  附加tryAppend()方法,不多说,都在代码注释里:

 1 /**   2  *  Try to append to a ProducerBatch.   3  *   4  *  If it is full, we return null and a new batch is created. We also close the batch for record appends to free up   5  *  resources like compression buffers. The batch will be fully closed (ie. the record batch headers will be written   6  *  and memory records built) in one of the following cases (whichever comes first): right before send,   7  *  if it is expired, or when the producer is closed.   8  */   9 private RecordAppendResult tryAppend(long timestamp, byte[] key, byte[] value, Header[] headers, Callback callback, Deque<ProducerBatch> deque) {  10     // 获取最新加入的ProducerBatch  11     ProducerBatch last = deque.peekLast();  12     if (last != null) {  13         FutureRecordMetadata future = last.tryAppend(timestamp, key, value, headers, callback, time.milliseconds());  14         if (future == null)  15             last.closeForRecordAppends();  16         else  17             // 记录添加结果类包含future、batch是否已满的标记、是否是新batch创建的标记  18             return new RecordAppendResult(future, deque.size() > 1 || last.isFull(), false);  19     }  20     // 如果这个Deque没有ProducerBatch元素,或者已经满了不足以加入本条消息则返回null  21     return null;  22 }

   以上代码见图解:

 

2.2 Sender

  Sender里最重要的方法莫过于run()方法,其中比较核心的方法是org.apache.kafka.clients.producer.internals.Sender#sendProducerData

  其中pollTimeout需要认真读注释,意思是最长阻塞到至少有一个通道在你注册的事件就绪了。返回0则表示走起发车了

 1 private long sendProducerData(long now) {   2     // 获取当前集群的所有信息   3     Cluster cluster = metadata.fetch();   4     // get the list of partitions with data ready to send   5     // @return ReadyCheckResult类的三个变量解释   6     // 1.Set<Node> readyNodes 准备好发送的节点   7     // 2.long nextReadyCheckDelayMs 下次检查节点的延迟时间   8     // 3.Set<String> unknownLeaderTopics 哪些topic找不到leader节点   9     RecordAccumulator.ReadyCheckResult result = this.accumulator.ready(cluster, now);  10     // if there are any partitions whose leaders are not known yet, force metadata update  11     // 如果有些topic不知道leader信息,更新metadata  12     if (!result.unknownLeaderTopics.isEmpty()) {  13         // The set of topics with unknown leader contains topics with leader election pending as well as  14         // topics which may have expired. Add the topic again to metadata to ensure it is included  15         // and request metadata update, since there are messages to send to the topic.  16         for (String topic : result.unknownLeaderTopics)  17             this.metadata.add(topic);  18         this.metadata.requestUpdate();  19     }  20  21     // 去除不能发送信息的节点  22     // remove any nodes we aren't ready to send to  23     Iterator<Node> iter = result.readyNodes.iterator();  24     long notReadyTimeout = Long.MAX_VALUE;  25     while (iter.hasNext()) {  26         Node node = iter.next();  27         if (!this.client.ready(node, now)) {  28             iter.remove();  29             notReadyTimeout = Math.min(notReadyTimeout, this.client.connectionDelay(node, now));  30         }  31     }  32  33     // 获取将要发送的消息  34     // create produce requests  35     Map<Integer, List<ProducerBatch>> batches = this.accumulator.drain(cluster, result.readyNodes,  36             this.maxRequestSize, now);  37  38     // 保证发送消息的顺序  39     if (guaranteeMessageOrder) {  40         // Mute all the partitions drained  41         for (List<ProducerBatch> batchList : batches.values()) {  42             for (ProducerBatch batch : batchList)  43                 this.accumulator.mutePartition(batch.topicPartition);  44         }  45     }  46  47     // 过期的batch  48     List<ProducerBatch> expiredBatches = this.accumulator.expiredBatches(this.requestTimeout, now);  49     boolean needsTransactionStateReset = false;  50     // Reset the producer id if an expired batch has previously been sent to the broker. Also update the metrics  51     // for expired batches. see the documentation of @TransactionState.resetProducerId to understand why  52     // we need to reset the producer id here.  53     if (!expiredBatches.isEmpty())  54         log.trace("Expired {} batches in accumulator", expiredBatches.size());  55     for (ProducerBatch expiredBatch : expiredBatches) {  56         failBatch(expiredBatch, -1, NO_TIMESTAMP, expiredBatch.timeoutException());  57         if (transactionManager != null && expiredBatch.inRetry()) {  58             needsTransactionStateReset = true;  59         }  60         this.sensors.recordErrors(expiredBatch.topicPartition.topic(), expiredBatch.recordCount);  61     }  62     if (needsTransactionStateReset) {  63         transactionManager.resetProducerId();  64         return 0;  65     }  66     sensors.updateProduceRequestMetrics(batches);  67     // If we have any nodes that are ready to send + have sendable data, poll with 0 timeout so this can immediately  68     // loop and try sending more data. Otherwise, the timeout is determined by nodes that have partitions with data  69     // that isn't yet sendable (e.g. lingering, backing off). Note that this specifically does not include nodes  70     // with sendable data that aren't ready to send since they would cause busy looping.  71     // 到底返回的这个pollTimeout是啥,我觉得用英文的注释解释比较清楚  72     // 1.The amount of time to block if there is nothing to do  73     // 2.waiting for a channel to become ready; if zero, block indefinitely;  74     long pollTimeout = Math.min(result.nextReadyCheckDelayMs, notReadyTimeout);  75     if (!result.readyNodes.isEmpty()) {  76         log.trace("Nodes with data ready to send: {}", result.readyNodes);  77         // if some partitions are already ready to be sent, the select time would be 0;  78         // otherwise if some partition already has some data accumulated but not ready yet,  79         // the select time will be the time difference between now and its linger expiry time;  80         // otherwise the select time will be the time difference between now and the metadata expiry time;  81         pollTimeout = 0;  82     }  83  84     // 发送消息  85     // 最后调用client.send()  86     sendProduceRequests(batches, now);  87     return pollTimeout;  88 }

  其中也需要了解这个方法:org.apache.kafka.clients.producer.internals.RecordAccumulator#ready。返回的类中3个关键参数的解释都在注释里。烦请看注释,我解释不好的地方可以看英文,原汁原味最好:

 1 /**   2  * Get a list of nodes whose partitions are ready to be sent, and the earliest time at which any non-sendable   3  * partition will be ready; Also return the flag for whether there are any unknown leaders for the accumulated   4  * partition batches.   5  * <p>   6  * A destination node is ready to send data if:   7  * <ol>   8  * <li>There is at least one partition that is not backing off its send   9  * <li><b>and</b> those partitions are not muted (to prevent reordering if  10  *   {@value org.apache.kafka.clients.producer.ProducerConfig#MAX_IN_FLIGHT_REQUESTS_PER_CONNECTION}  11  *   is set to one)</li>  12  * <li><b>and <i>any</i></b> of the following are true</li>  13  * <ul>  14  *     <li>The record set is full</li>  15  *     <li>The record set has sat in the accumulator for at least lingerMs milliseconds</li>  16  *     <li>The accumulator is out of memory and threads are blocking waiting for data (in this case all partitions  17  *     are immediately considered ready).</li>  18  *     <li>The accumulator has been closed</li>  19  * </ul>  20  * </ol>  21  */  22 /**  23  * @return ReadyCheckResult类的三个变量解释  24  * 1.Set<Node> readyNodes 准备好发送的节点  25  * 2.long nextReadyCheckDelayMs 下次检查节点的延迟时间  26  * 3.Set<String> unknownLeaderTopics 哪些topic找不到leader节点  27  *  28  * 一个节点满足以下任一条件则表示可以发送数据  29  * 1.batch满了  30  * 2.batch没满,但是等了lingerMs的时间  31  * 3.accumulator满了  32  * 4.accumulator关了  33  */  34 public ReadyCheckResult ready(Cluster cluster, long nowMs) {  35     Set<Node> readyNodes = new HashSet<>();  36     long nextReadyCheckDelayMs = Long.MAX_VALUE;  37     Set<String> unknownLeaderTopics = new HashSet<>();  38     boolean exhausted = this.free.queued() > 0;  39     for (Map.Entry<TopicPartition, Deque<ProducerBatch>> entry : this.batches.entrySet()) {  40         TopicPartition part = entry.getKey();  41         Deque<ProducerBatch> deque = entry.getValue();  42         Node leader = cluster.leaderFor(part);  43         synchronized (deque) {  44             // leader没有且队列非空则添加unknownLeaderTopics  45             if (leader == null && !deque.isEmpty()) {  46                 // This is a partition for which leader is not known, but messages are available to send.  47                 // Note that entries are currently not removed from batches when deque is empty.  48                 unknownLeaderTopics.add(part.topic());  49  50                 // 如果readyNodes不包含leader且muted不包含part  51                 // mute这个变量跟producer端的一个配置有关系:max.in.flight.requests.per.connection=1  52                 // 主要防止topic同分区下的消息乱序问题,限制了producer在单个broker连接上能够发送的未响应请求的数量  53                 // 如果设置为1,则producer在收到响应之前无法再给该broker发送该topic的PRODUCE请求  54             } else if (!readyNodes.contains(leader) && !muted.contains(part)) {  55                 ProducerBatch batch = deque.peekFirst();  56                 if (batch != null) {  57                     long waitedTimeMs = batch.waitedTimeMs(nowMs);  58                     boolean backingOff = batch.attempts() > 0 && waitedTimeMs < retryBackoffMs;  59                     // 等待时间  60                     long timeToWaitMs = backingOff ? retryBackoffMs : lingerMs;  61                     // batch满了  62                     boolean full = deque.size() > 1 || batch.isFull();  63                     // batch过期  64                     boolean expired = waitedTimeMs >= timeToWaitMs;  65                     boolean sendable = full || expired || exhausted || closed || flushInProgress();  66                     if (sendable && !backingOff) {  67                         readyNodes.add(leader);  68                     } else {  69                         long timeLeftMs = Math.max(timeToWaitMs - waitedTimeMs, 0);  70                         // Note that this results in a conservative estimate since an un-sendable partition may have  71                         // a leader that will later be found to have sendable data. However, this is good enough  72                         // since we'll just wake up and then sleep again for the remaining time.  73                         // 目前还没有leader,下次重试  74                         nextReadyCheckDelayMs = Math.min(timeLeftMs, nextReadyCheckDelayMs);  75                     }  76                 }  77             }  78         }  79     }  80     return new ReadyCheckResult(readyNodes, nextReadyCheckDelayMs, unknownLeaderTopics);  81 }

  还有一个方法就是org.apache.kafka.clients.producer.internals.RecordAccumulator#drain,从accumulator缓冲区获取要发送的数据,最大一次性发max.request.size大小的数据(最上面的配置参数里有):

  1 /**    2  * Drain all the data for the given nodes and collate them into a list of batches that will fit within the specified    3  * size on a per-node basis. This method attempts to avoid choosing the same topic-node over and over.    4  *    5  * @param cluster The current cluster metadata    6  * @param nodes The list of node to drain    7  * @param maxSize The maximum number of bytes to drain    8  * maxSize也就是producer端配置参数max.request.size来控制的,一次最多发多少    9  * @param now The current unix time in milliseconds   10  * @return A list of {@link ProducerBatch} for each node specified with total size less than the requested maxSize.   11  */   12 public Map<Integer, List<ProducerBatch>> drain(Cluster cluster, Set<Node> nodes, int maxSize, long now) {   13     if (nodes.isEmpty())   14         return Collections.emptyMap();   15     Map<Integer, List<ProducerBatch>> batches = new HashMap<>();   16     for (Node node : nodes) {   17         // for循环获取要发的batch   18         List<ProducerBatch> ready = drainBatchesForOneNode(cluster, node, maxSize, now);   19         batches.put(node.id(), ready);   20     }   21     return batches;   22 }   23   24 private List<ProducerBatch> drainBatchesForOneNode(Cluster cluster, Node node, int maxSize, long now) {   25     int size = 0;   26     // 获取node的partition   27     List<PartitionInfo> parts = cluster.partitionsForNode(node.id());   28     List<ProducerBatch> ready = new ArrayList<>();   29     /* to make starvation less likely this loop doesn't start at 0 */   30     // 避免每次都从一个partition取,要雨露均沾   31     int start = drainIndex = drainIndex % parts.size();   32     do {   33         PartitionInfo part = parts.get(drainIndex);   34         TopicPartition tp = new TopicPartition(part.topic(), part.partition());   35         this.drainIndex = (this.drainIndex + 1) % parts.size();   36   37         // Only proceed if the partition has no in-flight batches.   38         if (isMuted(tp, now))   39             continue;   40   41         Deque<ProducerBatch> deque = getDeque(tp);   42         if (deque == null)   43             continue;   44   45         // 加锁,不用说了吧   46         synchronized (deque) {   47             // invariant: !isMuted(tp,now) && deque != null   48             ProducerBatch first = deque.peekFirst();   49             if (first == null)   50                 continue;   51   52             // first != null   53             // 查看是否在backoff期间   54             boolean backoff = first.attempts() > 0 && first.waitedTimeMs(now) < retryBackoffMs;   55             // Only drain the batch if it is not during backoff period.   56             if (backoff)   57                 continue;   58   59             // 超过maxSize且ready里有东西   60             if (size + first.estimatedSizeInBytes() > maxSize && !ready.isEmpty()) {   61                 // there is a rare case that a single batch size is larger than the request size due to   62                 // compression; in this case we will still eventually send this batch in a single request   63                 // 有一种特殊的情况,batch的大小超过了maxSize,且batch是空的。也就是一个batch大小直接大于一次发送的maxSize   64                 // 这种情况下最终还是会发送这个batch在一次请求   65                 break;   66             } else {   67                 if (shouldStopDrainBatchesForPartition(first, tp))   68                     break;   69   70                 // 这块配置下面会讲   71                 boolean isTransactional = transactionManager != null ? transactionManager.isTransactional() : false;   72                 ProducerIdAndEpoch producerIdAndEpoch =   73                     transactionManager != null ? transactionManager.producerIdAndEpoch() : null;   74                 ProducerBatch batch = deque.pollFirst();   75                 if (producerIdAndEpoch != null && !batch.hasSequence()) {   76                     // If the batch already has an assigned sequence, then we should not change the producer id and   77                     // sequence number, since this may introduce duplicates. In particular, the previous attempt   78                     // may actually have been accepted, and if we change the producer id and sequence here, this   79                     // attempt will also be accepted, causing a duplicate.   80                     //   81                     // Additionally, we update the next sequence number bound for the partition, and also have   82                     // the transaction manager track the batch so as to ensure that sequence ordering is maintained   83                     // even if we receive out of order responses.   84                     batch.setProducerState(producerIdAndEpoch, transactionManager.sequenceNumber(batch.topicPartition), isTransactional);   85                     transactionManager.incrementSequenceNumber(batch.topicPartition, batch.recordCount);   86                     log.debug("Assigned producerId {} and producerEpoch {} to batch with base sequence " +   87                             "{} being sent to partition {}", producerIdAndEpoch.producerId,   88                         producerIdAndEpoch.epoch, batch.baseSequence(), tp);   89   90                     transactionManager.addInFlightBatch(batch);   91                 }   92                 // 添加batch,并且close   93                 batch.close();   94                 size += batch.records().sizeInBytes();   95                 ready.add(batch);   96   97                 batch.drained(now);   98             }   99         }  100     } while (start != drainIndex);  101     return ready;  102 }

三.幂等性producer

  上面说到一个参数,enable.idempotence。0.11.0.0版本引入的幂等性producer表示它的发送操作是幂等的,也就是说,不会存在各种错误导致的重复消息。(比如说瞬时的发送错误可能导致producer端出现重试,同一个消息可能发送多次)

  producer发送到broker端的每批消息都会有一个序列号(用于去重),Kakfa会把这个序列号存在底层日志,保存序列号只需要几个字节,开销很小。producer端会分配一个PID,对于PID、分区和序列号的关系,可以想象成一个哈希表,key就是(PID,分区),value就是序列号。比如第一次给broker发送((PID=1,分区=1),序列号=2),第二次发送的value比2小或者等于2,则broker会拒绝PRODUCE请求,实现去重。

  这个只能保证单个producer实例的EOS语义