【技术分享】pytorch的FINETUNING实践(resnet18 cifar10)

  • 2019 年 12 月 1 日
  • 筆記

本文主要是用pytorch训练resnet18模型,对cifar10进行分类,然后将cifar10的数据进行调整,加载已训练好的模型,在原有模型上FINETUNING 对调整的数据进行分类, 可参考pytorch官网教程

resnet18模型

pytorch的resnet18模型引用:https://github.com/kuangliu/pytorch-cifar

模型详情可参考github里面的models/resnet.py, 这里不做详细的说明,readme描述准确率可达到93.02%,但我本地测试迭代200次没有达到这个数字,本地200次迭代准确率为87.40%。

导入需要的包

import os    import numpy as np  import torch.backends.cudnn as cudnn  import torch.optim as optim  import torchvision  import torchvision.transforms as transforms    from models import *  from utils import progress_bar

设置随机种子,让结果可复现

这里尝试了比较久,在cpu上运行,只需要设置torch.manual_seed(SEED)即可稳定复现结果,但在GPU上始终不行,总存在randomness的问题,后来在友人的帮助下,查了官方的资料,终于解决了这个问题,感谢。其中tensorflow在GPU似乎做不到结果可稳定复现,如果有知道的同学,还请不吝指导~

SEED = 0  torch.manual_seed(SEED)  torch.cuda.manual_seed(SEED)  torch.backends.cudnn.deterministic = True  torch.backends.cudnn.benchmark = False  np.random.seed(SEED)

设置是运行在cpu上还是gpu上

根据是否有gpu可用选择运行的设备,注意驱动的安装,版本的兼容性,驱动也折磨了我很久。。由于我运行在docker中,下载的驱动版本不一致,导致一直检测不到gpu

device = 'cuda' if torch.cuda.is_available() else 'cpu'  best_acc = 0  start_epoch = 0

数据加载及预处理

数据存放在py文件同级目录下的data文件夹下,如果数据不存在,download设置的为True,会自动从pytorch上进行下载,这里对数据进行不同的转换,增加数据多样性。

transform_train = transforms.Compose([      transforms.RandomCrop(32, padding=4),      transforms.RandomHorizontalFlip(),      transforms.ToTensor(),      transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),  ])    transform_test = transforms.Compose([      transforms.ToTensor(),      transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)),  ])    trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)  trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=2)    testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)  testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=2)

对数据集进行调整

原来cifar数据集包含10个类别

['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck']

需要实践FINETUNING,所以对数据集进行了改造,由10类改为2类,分别为动物和运输工具。马算不算交通工具呢?^.^

clz_idx = trainset.class_to_idx  clz_to_idx = {'animal': 0, 'transport': 1}  clz = ['animal', 'transport']  animal_name = ["bird", "cat", "deer", "dog", "frog", "horse"]  animal = [clz_idx[x] for x in animal_name]    trainset.targets = [0 if x in animal else 1 for x in trainset.targets]  trainset.class_to_idx = clz_to_idx  trainset.classes = clz  testset.targets = [0 if x in animal else 1 for x in testset.targets]  testset.class_to_idx = clz_to_idx  testset.classes = clz

加载预训练的模型

模型存放在checkpoint目录下,模型的训练是上述的Resnet18, 注意如果是gpu训练,尤其关注一下if中代码的顺序。

  • 将net装换为DataParallel,用以并行训练,因为原Resnet18在gpu上训练使用了DataParallel,所以这里也要进行封装,会包一层module
  • FINETUNING:将最后一层的10类输出,改为2类输出。注意gpu中的写法,net.module.linear
  • net = net.to(device) 修改了模型之后,要将模型推送到gpu上,这步不能提前,会出现参数不在GPU上的错误
assert os.path.isdir('checkpoint'), 'Error: no checkpoint directory found!'  checkpoint = torch.load('./checkpoint/ckpt.pth')    net = ResNet18()  if device == 'cuda':      net = torch.nn.DataParallel(net)      net.load_state_dict(checkpoint['net'])      net.module.linear = nn.Linear(net.module.linear.in_features, 2)  else:      net.load_state_dict(checkpoint['net'])      net.linear = nn.Linear(net.linear.in_features, 2)    net = net.to(device)

指定不需要调整的层数

指定前40层的参数固定,不需要再学习

for idx, (name, param) in enumerate(net.named_parameters()):      if idx > 40:  # count of layers is 62          param.requires_grad = False        if param.requires_grad == True:          print("t", idx, name)

loss函数和优化算法

criterion = nn.CrossEntropyLoss()  optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)

训练函数 及 测试函数

参考Resnet18中的main.py, 在测试的时候,保存训练的结果,用以后续继续训练,区分文件夹保存, 同时只有在精度提高的基础上进行保存

def train(epoch):      print('nEpoch: %d' % epoch)      net.train()      train_loss = 0      correct = 0      total = 0      for batch_idx, (inputs, targets) in enumerate(trainloader):          inputs, targets = inputs.to(device), targets.to(device)          optimizer.zero_grad()          outputs = net(inputs)          loss = criterion(outputs, targets)          loss.backward()          optimizer.step()          train_loss += loss.item()          _, predicted = outputs.max(1)          total += targets.size(0)          correct += predicted.eq(targets).sum().item()          # print('%d/%d, [Loss: %.03f | Acc: %.3f%% (%d/%d)]'          #       % (batch_idx+1, len(trainloader), train_loss/(batch_idx+1), 100.*correct/total, correct, total))          progress_bar(batch_idx, len(trainloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'                       % (train_loss / (batch_idx + 1), 100. * correct / total, correct, total))    best_acc = 0  def test(epoch):      global best_acc      net.eval()      test_loss = 0      correct = 0      total = 0      with torch.no_grad():          for batch_idx, (inputs, targets) in enumerate(testloader):              inputs, targets = inputs.to(device), targets.to(device)              outputs = net(inputs)              loss = criterion(outputs, targets)                test_loss += loss.item()              _, predicted = outputs.max(1)              total += targets.size(0)              correct += predicted.eq(targets).sum().item()                progress_bar(batch_idx, len(testloader), 'Loss: %.3f | Acc: %.3f%% (%d/%d)'                           % (test_loss / (batch_idx + 1), 100. * correct / total, correct, total))        # Save checkpoint.      acc = 100. * correct / total      if acc > best_acc:          print('Saving..')          state = {              'net': net.state_dict(),              'acc': acc,              'epoch': epoch,          }          if not os.path.isdir('checkpoint_ft'):              os.mkdir('checkpoint_ft')          torch.save(state, './checkpoint_ft/ckpt.pth')          best_acc = acc

开始训练

由于在已经训练好的模型的基础上训练,这里的迭代次数不用太多即可以达到较高的准确率

for epoch in range(start_epoch, start_epoch + 20):      train(epoch)      test(epoch)

结果展示

Epoch: 0   [================================================================>]  Step: 53ms | Tot: 3 391/391  Loss: 0.520 | Acc: 88.662% (44331/50000)   [================================================================>]  Step: 21ms | Tot 100/100 | Loss: 0.449 | Acc: 95.090% (9509/10000)  Saving..    Epoch: 1   [================================================================>]  Step: 53ms | Tot: 3 391/391  Loss: 0.430 | Acc: 95.342% (47671/50000)   [================================================================>]  Step: 20ms | Tot 100/100 | Loss: 0.411 | Acc: 95.590% (9559/10000)  Saving..    Epoch: 2   [================================================================>]  Step: 53ms | Tot: 3 391/391  Loss: 0.394 | Acc: 95.816% (47908/50000)   [================================================================>]  Step: 20ms | Tot 100/100 | Loss: 0.373 | Acc: 96.110% (9611/10000)  Saving..    Epoch: 3   [================================================================>]  Step: 54ms | Tot: 3 391/391  Loss: 0.376 | Acc: 96.002% (48001/50000)   [================================================================>]  Step: 20ms | Tot 100/100 | Loss: 0.386 | Acc: 94.560% (9456/10000)    Epoch: 4   [================================================================>]  Step: 54ms | Tot: 3 391/391  Loss: 0.368 | Acc: 96.160% (48080/50000)   [================================================================>]  Step: 20ms | Tot 100/100 | Loss: 0.365 | Acc: 96.350% (9635/10000)  Saving..    Epoch: 5   [================================================================>]  Step: 53ms | Tot: 3 391/391  Loss: 0.362 | Acc: 96.214% (48107/50000)   [================================================================>]  Step: 20ms | Tot 100/100 | Loss: 0.381 | Acc: 93.430% (9343/10000)    Epoch: 6   [================================================================>]  Step: 54ms | Tot: 3 391/391  Loss: 0.360 | Acc: 96.070% (48035/50000)   [================================================================>]  Step: 20ms | Tot 100/100 | Loss: 0.362 | Acc: 95.400% (9540/10000)    Epoch: 7   [================================================================>]  Step: 53ms | Tot: 3 391/391  Loss: 0.358 | Acc: 96.062% (48031/50000)   [================================================================>]  Step: 21ms | Tot 100/100 | Loss: 0.400 | Acc: 90.730% (9073/10000)    Epoch: 8   [================================================================>]  Step: 54ms | Tot: 3 391/391  Loss: 0.356 | Acc: 96.214% (48107/50000)   [================================================================>]  Step: 20ms | Tot 100/100 | Loss: 0.362 | Acc: 96.280% (9628/10000)    Epoch: 9   [================================================================>]  Step: 53ms | Tot: 3 391/391  Loss: 0.353 | Acc: 96.242% (48121/50000)   [================================================================>]  Step: 20ms | Tot 100/100 | Loss: 0.376 | Acc: 94.590% (9459/10000)    Epoch: 10   [================================================================>]  Step: 53ms | Tot: 3 391/391  Loss: 0.352 | Acc: 96.348% (48174/50000)   [================================================================>]  Step: 21ms | Tot 100/100 | Loss: 0.384 | Acc: 93.080% (9308/10000)    Epoch: 11   [================================================================>]  Step: 54ms | Tot: 3 391/391  Loss: 0.351 | Acc: 96.236% (48118/50000)   [================================================================>]  Step: 20ms | Tot 100/100 | Loss: 0.356 | Acc: 95.480% (9548/10000)    Epoch: 12   [================================================================>]  Step: 53ms | Tot: 3 391/391  Loss: 0.350 | Acc: 96.348% (48174/50000)   [================================================================>]  Step: 20ms | Tot 100/100 | Loss: 0.383 | Acc: 93.170% (9317/10000)      Epoch: 13   [================================================================>]  Step: 53ms | Tot: 3 391/391  Loss: 0.348 | Acc: 96.358% (48179/50000)   [================================================================>]  Step: 20ms | Tot 100/100 | Loss: 0.373 | Acc: 93.330% (9333/10000)    Epoch: 14   [================================================================>]  Step: 53ms | Tot: 3 391/391  Loss: 0.347 | Acc: 96.446% (48223/50000)   [================================================================>]  Step: 20ms | Tot 100/100 | Loss: 0.391 | Acc: 91.670% (9167/10000)    Epoch: 15   [================================================================>]  Step: 54ms | Tot: 3 391/391  Loss: 0.346 | Acc: 96.324% (48162/50000)   [================================================================>]  Step: 21ms | Tot 100/100 | Loss: 0.347 | Acc: 95.880% (9588/10000)    Epoch: 16   [================================================================>]  Step: 54ms | Tot: 3 391/391  Loss: 0.344 | Acc: 96.488% (48244/50000)   [================================================================>]  Step: 20ms | Tot 100/100 | Loss: 0.343 | Acc: 95.980% (9598/10000)    Epoch: 17   [================================================================>]  Step: 53ms | Tot: 3 391/391  Loss: 0.344 | Acc: 96.416% (48208/50000)   [================================================================>]  Step: 21ms | Tot 100/100 | Loss: 0.344 | Acc: 95.890% (9589/10000)    Epoch: 18   [================================================================>]  Step: 54ms | Tot: 3 391/391  Loss: 0.344 | Acc: 96.370% (48185/50000)   [================================================================>]  Step: 20ms | Tot 100/100 | Loss: 0.354 | Acc: 95.060% (9506/10000)    Epoch: 19   [================================================================>]  Step: 53ms | Tot: 3 391/391  Loss: 0.344 | Acc: 96.338% (48169/50000)   [================================================================>]  Step: 20ms | Tot 100/100 | Loss: 0.399 | Acc: 89.760% (8976/10000)

在已有准确率为87.4%的Resnet18模型上进行FINETUNING二分类,第一次迭代准确率就能达到95.09%,收敛速度还是很快的,分类效果也不错。

最终20次迭代测试集最高为96.11%。

最后

pytorch构建模型比较简单,代码看起来也很清晰,文档支持的比较全面。