JavaScript 数据结构与算法之美 – 桶排序、计数排序、基数排序

  • 2019 年 10 月 3 日
  • 筆記

JavaScript 数据结构与算法之美

1. 前言

算法为王。

想学好前端,先练好内功,只有内功深厚者,前端之路才会走得更远

笔者写的 JavaScript 数据结构与算法之美 系列用的语言是 JavaScript ,旨在入门数据结构与算法和方便以后复习。

之所以把 计数排序、桶排序、基数排序 放在一起比较,是因为它们的平均时间复杂度都为 O(n)

因为这三个排序算法的时间复杂度是线性的,所以我们把这类排序算法叫作 线性排序(Linear sort)。

之所以能做到线性的时间复杂度,主要原因是,这三个算法不是基于比较的排序算法,都不涉及元素之间的比较操作。

另外,请大家带着问题来阅读下文,问题:如何根据年龄给 100 万用户排序 ?

2. 桶排序(Bucket Sort)

桶排序是计数排序的升级版,也采用了分治思想

思想

  • 将要排序的数据分到有限数量的几个有序的桶里。
  • 每个桶里的数据再单独进行排序(一般用插入排序或者快速排序)。
  • 桶内排完序之后,再把每个桶里的数据按照顺序依次取出,组成的序列就是有序的了。

比如:

桶排序利用了函数的映射关系,高效与否的关键就在于这个映射函数的确定。

为了使桶排序更加高效,我们需要做到这两点:

  • 在额外空间充足的情况下,尽量增大桶的数量。
  • 使用的映射函数能够将输入的 N 个数据均匀的分配到 K 个桶中。

桶排序的核心:就在于怎么把元素平均分配到每个桶里,合理的分配将大大提高排序的效率。

实现

// 桶排序  const bucketSort = (array, bucketSize) => {    if (array.length === 0) {      return array;    }      console.time('桶排序耗时');    let i = 0;    let minValue = array[0];    let maxValue = array[0];    for (i = 1; i < array.length; i++) {      if (array[i] < minValue) {        minValue = array[i]; //输入数据的最小值      } else if (array[i] > maxValue) {        maxValue = array[i]; //输入数据的最大值      }    }      //桶的初始化    const DEFAULT_BUCKET_SIZE = 5; //设置桶的默认数量为 5    bucketSize = bucketSize || DEFAULT_BUCKET_SIZE;    const bucketCount = Math.floor((maxValue - minValue) / bucketSize) + 1;    const buckets = new Array(bucketCount);    for (i = 0; i < buckets.length; i++) {      buckets[i] = [];    }      //利用映射函数将数据分配到各个桶中    for (i = 0; i < array.length; i++) {      buckets[Math.floor((array[i] - minValue) / bucketSize)].push(array[i]);    }      array.length = 0;    for (i = 0; i < buckets.length; i++) {      quickSort(buckets[i]); //对每个桶进行排序,这里使用了快速排序      for (var j = 0; j < buckets[i].length; j++) {        array.push(buckets[i][j]);      }    }    console.timeEnd('桶排序耗时');      return array;  };    // 快速排序  const quickSort = (arr, left, right) => {      let len = arr.length,          partitionIndex;      left = typeof left != 'number' ? 0 : left;      right = typeof right != 'number' ? len - 1 : right;        if (left < right) {          partitionIndex = partition(arr, left, right);          quickSort(arr, left, partitionIndex - 1);          quickSort(arr, partitionIndex + 1, right);      }      return arr;  };    const partition = (arr, left, right) => {      //分区操作      let pivot = left, //设定基准值(pivot)          index = pivot + 1;      for (let i = index; i <= right; i++) {          if (arr[i] < arr[pivot]) {              swap(arr, i, index);              index++;          }      }      swap(arr, pivot, index - 1);      return index - 1;  };    const swap = (arr, i, j) => {      let temp = arr[i];      arr[i] = arr[j];      arr[j] = temp;  };

测试

const array = [4, 6, 8, 5, 9, 1, 2, 5, 3, 2];  console.log('原始array:', array);  const newArr = bucketSort(array);  console.log('newArr:', newArr);  // 原始 array:  [4, 6, 8, 5, 9, 1, 2, 5, 3, 2]  // 堆排序耗时:   0.133056640625ms  // newArr:       [1, 2, 2, 3, 4, 5, 5, 6, 8, 9]

分析

  • 第一,桶排序是原地排序算法吗 ?

因为桶排序的空间复杂度,也即内存消耗为 O(n),所以不是原地排序算法。

  • 第二,桶排序是稳定的排序算法吗 ?

取决于每个桶的排序方式,比如:快排就不稳定,归并就稳定。

  • 第三,桶排序的时间复杂度是多少 ?

因为桶内部的排序可以有多种方法,是会对桶排序的时间复杂度产生很重大的影响。所以,桶排序的时间复杂度可以是多种情况的。

总的来说
最佳情况:当输入的数据可以均匀的分配到每一个桶中。
最差情况:当输入的数据被分配到了同一个桶中。

以下是桶的内部排序快速排序的情况:

如果要排序的数据有 n 个,我们把它们均匀地划分到 m 个桶内,每个桶里就有 k =n / m 个元素。每个桶内部使用快速排序,时间复杂度为 O(k * logk)。
m 个桶排序的时间复杂度就是 O(m * k * logk),因为 k = n / m,所以整个桶排序的时间复杂度就是 O(n*log(n/m))。
当桶的个数 m 接近数据个数 n 时,log(n/m) 就是一个非常小的常量,这个时候桶排序的时间复杂度接近 O(n)。

最佳情况:T(n) = O(n)。当输入的数据可以均匀的分配到每一个桶中。
最差情况:T(n) = O(nlogn)。当输入的数据被分配到了同一个桶中。
平均情况:T(n) = O(n)。

桶排序最好情况下使用线性时间 O(n),桶排序的时间复杂度,取决与对各个桶之间数据进行排序的时间复杂度,因为其它部分的时间复杂度都为 O(n)。
很显然,桶划分的越小,各个桶之间的数据越少,排序所用的时间也会越少。但相应的空间消耗就会增大。

适用场景

  • 桶排序比较适合用在外部排序中。
  • 外部排序就是数据存储在外部磁盘且数据量大,但内存有限,无法将整个数据全部加载到内存中。

动画

bocket-sort.gif

3. 计数排序(Counting Sort)

思想

  • 找出待排序的数组中最大和最小的元素。
  • 统计数组中每个值为 i 的元素出现的次数,存入新数组 countArr 的第 i 项。
  • 对所有的计数累加(从 countArr 中的第一个元素开始,每一项和前一项相加)。
  • 反向填充目标数组:将每个元素 i 放在新数组的第 countArr[i] 项,每放一个元素就将 countArr[i] 减去 1 。

关键在于理解最后反向填充时的操作。

使用条件

  • 只能用在数据范围不大的场景中,若数据范围 k 比要排序的数据 n 大很多,就不适合用计数排序。
  • 计数排序只能给非负整数排序,其他类型需要在不改变相对大小情况下,转换为非负整数。
  • 比如如果考试成绩精确到小数后一位,就需要将所有分数乘以 10,转换为整数。

实现

方法一:

const countingSort = array => {      let len = array.length,          result = [],          countArr = [],          min = (max = array[0]);      console.time('计数排序耗时');      for (let i = 0; i < len; i++) {          // 获取最小,最大 值          min = min <= array[i] ? min : array[i];          max = max >= array[i] ? max : array[i];          countArr[array[i]] = countArr[array[i]] ? countArr[array[i]] + 1 : 1;      }      console.log('countArr :', countArr);      // 从最小值 -> 最大值,将计数逐项相加      for (let j = min; j < max; j++) {          countArr[j + 1] = (countArr[j + 1] || 0) + (countArr[j] || 0);      }      console.log('countArr 2:', countArr);      // countArr 中,下标为 array 数值,数据为 array 数值出现次数;反向填充数据进入 result 数据      for (let k = len - 1; k >= 0; k--) {          // result[位置] = array 数据          result[countArr[array[k]] - 1] = array[k];          // 减少 countArr 数组中保存的计数          countArr[array[k]]--;          // console.log("array[k]:", array[k], 'countArr[array[k]] :', countArr[array[k]],)          console.log('result:', result);      }      console.timeEnd('计数排序耗时');      return result;  };

测试

const array = [2, 2, 3, 8, 7, 1, 2, 2, 2, 7, 3, 9, 8, 2, 1, 4, 2, 4, 6, 9, 2];  console.log('原始 array: ', array);  const newArr = countingSort(array);  console.log('newArr: ', newArr);  // 原始 array:  [2, 2, 3, 8, 7, 1, 2, 2, 2, 7, 3, 9, 8, 2, 1, 4, 2, 4, 6, 9, 2]  // 计数排序耗时:   5.6708984375ms  // newArr:       [1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 6, 7, 7, 8, 8, 9, 9]

测试结果

方法二:

const countingSort2 = (arr, maxValue) => {      console.time('计数排序耗时');      maxValue = maxValue || arr.length;      let bucket = new Array(maxValue + 1),          sortedIndex = 0;      (arrLen = arr.length), (bucketLen = maxValue + 1);        for (let i = 0; i < arrLen; i++) {          if (!bucket[arr[i]]) {              bucket[arr[i]] = 0;          }          bucket[arr[i]]++;      }        for (let j = 0; j < bucketLen; j++) {          while (bucket[j] > 0) {              arr[sortedIndex++] = j;              bucket[j]--;          }      }      console.timeEnd('计数排序耗时');      return arr;  };

测试

const array2 = [2, 2, 3, 8, 7, 1, 2, 2, 2, 7, 3, 9, 8, 2, 1, 4, 2, 4, 6, 9, 2];  console.log('原始 array2: ', array2);  const newArr2 = countingSort2(array2, 21);  console.log('newArr2: ', newArr2);  // 原始 array:  [2, 2, 3, 8, 7, 1, 2, 2, 2, 7, 3, 9, 8, 2, 1, 4, 2, 4, 6, 9, 2]  // 计数排序耗时:   0.043212890625ms  // newArr:       [1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 4, 4, 6, 7, 7, 8, 8, 9, 9]

例子

可以认为,计数排序其实是桶排序的一种特殊情况

当要排序的 n 个数据,所处的范围并不大的时候,比如最大值是 k,我们就可以把数据划分成 k 个桶。每个桶内的数据值都是相同的,省掉了桶内排序的时间。

我们都经历过高考,高考查分数系统你还记得吗?我们查分数的时候,系统会显示我们的成绩以及所在省的排名。如果你所在的省有 50 万考生,如何通过成绩快速排序得出名次呢?

  • 考生的满分是 900 分,最小是 0 分,这个数据的范围很小,所以我们可以分成 901 个桶,对应分数从 0 分到 900 分。
  • 根据考生的成绩,我们将这 50 万考生划分到这 901 个桶里。桶内的数据都是分数相同的考生,所以并不需要再进行排序。
  • 我们只需要依次扫描每个桶,将桶内的考生依次输出到一个数组中,就实现了 50 万考生的排序。
  • 因为只涉及扫描遍历操作,所以时间复杂度是 O(n)。

分析

  • 第一,计数排序是原地排序算法吗 ?
    因为计数排序的空间复杂度为 O(k),k 是桶的个数,所以不是原地排序算法。
  • 第二,计数排序是稳定的排序算法吗 ?
    计数排序不改变相同元素之间原本相对的顺序,因此它是稳定的排序算法。
  • 第三,计数排序的时间复杂度是多少 ?
    最佳情况:T(n) = O(n + k)
    最差情况:T(n) = O(n + k)
    平均情况:T(n) = O(k)
    k:桶的个数。

动画

counting-sort.gif

4. 基数排序(Radix Sort)

思想

基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。

由于整数也可以表达字符串(比如名字或日期)和特定格式的浮点数,所以基数排序也不是只能使用于整数。

例子

假设我们有 10 万个手机号码,希望将这 10 万个手机号码从小到大排序,你有什么比较快速的排序方法呢 ?

这个问题里有这样的规律:假设要比较两个手机号码 a,b 的大小,如果在前面几位中,a 手机号码已经比 b 手机号码大了,那后面的几位就不用看了。所以是基于来比较的。

桶排序、计数排序能派上用场吗 ?手机号码有 11 位,范围太大,显然不适合用这两种排序算法。针对这个排序问题,有没有时间复杂度是 O(n) 的算法呢 ? 有,就是基数排序。

使用条件

  • 要求数据可以分割独立的来比较;
  • 位之间由递进关系,如果 a 数据的高位比 b 数据大,那么剩下的地位就不用比较了;
  • 每一位的数据范围不能太大,要可以用线性排序,否则基数排序的时间复杂度无法做到 O(n)。

方案

按照优先从高位或低位来排序有两种实现方案:

  • MSD:由高位为基底,先按 k1 排序分组,同一组中记录, 关键码 k1 相等,再对各组按 k2 排序分成子组, 之后,对后面的关键码继续这样的排序分组,直到按最次位关键码 kd 对各子组排序后,再将各组连接起来,便得到一个有序序列。MSD 方式适用于位数多的序列。
  • LSD:由低位为基底,先从 kd 开始排序,再对 kd – 1 进行排序,依次重复,直到对 k1 排序后便得到一个有序序列。LSD 方式适用于位数少的序列。

实现

/**      * name: 基数排序      * @param  array 待排序数组      * @param  max 最大位数      */  const radixSort = (array, max) => {      console.time('计数排序耗时');      const buckets = [];      let unit = 10,          base = 1;      for (let i = 0; i < max; i++, base *= 10, unit *= 10) {          for (let j = 0; j < array.length; j++) {              let index = ~~((array[j] % unit) / base); //依次过滤出个位,十位等等数字              if (buckets[index] == null) {                  buckets[index] = []; //初始化桶              }              buckets[index].push(array[j]); //往不同桶里添加数据          }          let pos = 0,              value;          for (let j = 0, length = buckets.length; j < length; j++) {              if (buckets[j] != null) {                  while ((value = buckets[j].shift()) != null) {                      array[pos++] = value; //将不同桶里数据挨个捞出来,为下一轮高位排序做准备,由于靠近桶底的元素排名靠前,因此从桶底先捞                  }              }          }      }      console.timeEnd('计数排序耗时');      return array;  };

测试

const array = [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48];  console.log('原始array:', array);  const newArr = radixSort(array, 2);  console.log('newArr:', newArr);  // 原始 array:  [3, 44, 38, 5, 47, 15, 36, 26, 27, 2, 46, 4, 19, 50, 48]  // 堆排序耗时:   0.064208984375ms  // newArr:       [2, 3, 4, 5, 15, 19, 26, 27, 36, 38, 44, 46, 47, 48, 50]

分析

  • 第一,基数排序是原地排序算法吗 ?
    因为计数排序的空间复杂度为 O(n + k),所以不是原地排序算法。

  • 第二,基数排序是稳定的排序算法吗 ?
    基数排序不改变相同元素之间的相对顺序,因此它是稳定的排序算法。

  • 第三,基数排序的时间复杂度是多少 ?
    最佳情况:T(n) = O(n * k)
    最差情况:T(n) = O(n * k)
    平均情况:T(n) = O(n * k)
    k 是待排序列最大值。

动画

LSD 基数排序动图演示:

radixSort.gif

5. 解答开篇

回过头来看看开篇的思考题:如何根据年龄给 100 万用户排序 ?

你可能会说,我用上一节讲的归并、快排就可以搞定啊!是的,它们也可以完成功能,但是时间复杂度最低也是 O(nlogn)。

有没有更快的排序方法呢 ?以下是参考答案。

  • 实际上,根据年龄给 100 万用户排序,就类似按照成绩给 50 万考生排序。
  • 我们假设年龄的范围最小 1 岁,最大不超过 120 岁。
  • 我们可以遍历这 100 万用户,根据年龄将其划分到这 120 个桶里,然后依次顺序遍历这 120 个桶中的元素。
  • 这样就得到了按照年龄排序的 100 万用户数据。

6. 复杂性对比

基数排序 vs 计数排序 vs 桶排序

基数排序有两种方法:

  • MSD 从高位开始进行排序
  • LSD 从低位开始进行排序

这三种排序算法都利用了桶的概念,但对桶的使用方法上有明显差异:

  • 基数排序:根据键值的每位数字来分配桶;
  • 计数排序:每个桶只存储单一键值;
  • 桶排序:每个桶存储一定范围的数值;

复杂性对比

名称 平均 最好 最坏 空间 稳定性 排序方式
桶排序 O(n + k) O(n + k) O(n2) O(n + k) Yes Out-place
计数排序 O(n + k) O(n + k) O(n + k) O(k) Yes Out-place
基数排序 O(n * k) O(n * k) O(n * k) O(n + k) Yes Out-place

n: 数据规模

桶排序的时间复杂度可以是多种情况的,取决于桶内的排序。

7. 最后

文中所有的代码及测试事例都已经放到我的 GitHub 上了。

觉得有用 ?喜欢就收藏,顺便点个赞吧,你的支持是我最大的鼓励!

参考文章: