ThreadLocal原理分析与代码验证

  • 2019 年 11 月 26 日
  • 筆記

ThreadLocal提供了线程安全的数据存储和访问方式,利用不带key的get和set方法,居然能做到线程之间隔离,非常神奇。

比如

ThreadLocal<String> threadLocal = new ThreadLocal<>();

in thread 1

//in thread1  treadLocal.set("value1");  .....  //value的值是value1  String value = threadLocal.get();

in thread 2

//in thread2  treadLocal.set("value2");  .....  //value的值是value2  String value = threadLocal.get();

不论thread1和thread2是不是同时执行,都不会有线程安全问题,我们来测试一下。

线程安全测试

开10个线程,每个线程内都对同一个ThreadLocal对象set不同的值,会发现ThreadLocal在每个线程内部get出来的值,只会是自己线程内set进去的值,不会被别的线程影响。

static void testUsage() throws InterruptedException {      Utils.println("-------------testUsage-------------------");      ThreadLocal<Long> threadLocal = new ThreadLocal<>();        AtomicBoolean threadSafe = new AtomicBoolean(true);      int count = 10;      CountDownLatch countDownLatch = new CountDownLatch(count);      Random random = new Random(736832);      for (int i = 0; i < count; i ++){          new Thread(() -> {              try {                  //生成一个随机数                  Long value = System.nanoTime() + random.nextInt();                  threadLocal.set(value);                  Thread.sleep(1000);                    Long value2 = threadLocal.get();                  if (!value.equals(value2)) {                      //get和set的value不一致,说明被别的线程修改了,但这是不可能出现的                      threadSafe.set(false);                      Utils.println("thread unsafe, this could not be happen!");                  }              } catch (InterruptedException e) {                }finally {                  countDownLatch.countDown();              }            }).start();      }        countDownLatch.await();        Utils.println("all thread done, and threadSafe is " + threadSafe.get());      Utils.println("------------------------------------------");  }

输出:

-------------testUsage------------------  all thread done, and threadSafe is true  -----------------------------------------

原理浅析

翻开ThreadLocal的源码,会发现ThreadLocal只是一个空壳子,它并不存储具体的value,而是利用当前线程(Thread.currentThread())的threadLocalMap来存储value,key就是这个threadLocal对象本身。

public void set(T value) {      Thread t = Thread.currentThread();      ThreadLocalMap map = getMap(t);      if (map != null)          map.set(this, value);      else          createMap(t, value);  }    ThreadLocalMap getMap(Thread t) {      return t.threadLocals;  }

Thread的threadLocals字段是ThreadLocalMap类型(你可以简单理解为一个key value的Map),key是ThreadLocal对象,value是我们在外层设置的值

  • 当我们调用threadLocal.set(value)方法的时候,会找到当前线程的threadLocals这个map,然后以this作为key去set key value
  • 当我们调用threadLocal.get()方法的时候,会找到当前线程的threadLocals这个map,然后以this作为key去get value
  • 当我们调用threadLocal.remove()方法的时候,会找到当前线程的threadLocals这个map,然后以this作为key去remove

这就相当于:

Thread.currentThread().threadLocals.set(threadLocal1, "value1");  .....  //value的值是value1  String value = Thread.currentThread().threadLocals.get(threadLocal1);

因为每个Thread都是不同的对象,所以他们的threadLocals也是不同的map,threadLocal在不同的线程里工作时,实际上是从不同的map里get/set,这也就是线程安全的原因了,了解到这一点就差不多了。

再深入一些,ThreadLocalMap的结构

如果继续翻ThreadLocalMap的源码,会发现它有个字段table,是Entry类型的数组。

我们不妨写段代码,把ThreadLocalMap的结构输出出来。

由于Thread.threadLocals和ThreadLocalMap类不是public的,我们只有通过反射来获取它的值。反射的代码如下(如果嫌长可以不看,直接看输出):

static Object getThreadLocalMap(Thread thread) throws NoSuchFieldException, IllegalAccessException {      //get thread.threadLocals      Field threadLocals = Thread.class.getDeclaredField("threadLocals");      threadLocals.setAccessible(true);      return threadLocals.get(thread);  }    static void printThreadLocalMap(Object threadLocalMap) throws NoSuchFieldException, IllegalAccessException {      String threadName = Thread.currentThread().getName();        if(threadLocalMap == null){          Utils.println("threadMap is null, threadName:" + threadName);          return;      }        Utils.println(threadName);        //get threadLocalMap.table      Field tableField = threadLocalMap.getClass().getDeclaredField("table");      tableField.setAccessible(true);      Object[] table = (Object[])tableField.get(threadLocalMap);      Utils.println("----threadLocals (ThreadLocalMap), table.length = " + table.length);        for (int i = 0; i < table.length; i ++){          WeakReference<ThreadLocal<?>> entry = (WeakReference<ThreadLocal<?>>)table[i];          printEntry(entry, i);      }  }  static void printEntry(WeakReference<ThreadLocal<?>> entry, int i) throws NoSuchFieldException, IllegalAccessException {      if(entry == null){          Utils.println("--------table[" + i + "] -> null");          return;      }      ThreadLocal key = entry.get();      //get entry.value      Field valueField = entry.getClass().getDeclaredField("value");      valueField.setAccessible(true);      Object value = valueField.get(entry);        Utils.println("--------table[" + i + "] -> entry key = " + key + ", value = " + value);  }

测试代码:

static void testStructure() throws InterruptedException {      Utils.println("-------------testStructure----------------");      ThreadLocal<String> threadLocal1 = new ThreadLocal<>();      ThreadLocal<String> threadLocal2 = new ThreadLocal<>();        Thread thread1 = new Thread(() -> {          threadLocal1.set("threadLocal1-value");          threadLocal2.set("threadLocal2-value");            try {              Object threadLocalMap = getThreadLocalMap(Thread.currentThread());              printThreadLocalMap(threadLocalMap);            } catch (NoSuchFieldException | IllegalAccessException e) {              e.printStackTrace();          }        }, "thread1");        thread1.start();        //wait thread1 done      thread1.join();        Thread thread2 = new Thread(() -> {          threadLocal1.set("threadLocal1-value");          try {              Object threadLocalMap = getThreadLocalMap(Thread.currentThread());              printThreadLocalMap(threadLocalMap);            } catch (NoSuchFieldException | IllegalAccessException e) {              e.printStackTrace();          }        }, "thread2");        thread2.start();      thread2.join();      Utils.println("------------------------------------------");  }

我们在创建了两个ThreadLocal的对象threadLocal1和threadLocal2,在线程1里为这两个对象设置值,在线程2里只为threadLocal1设置值。然后分别打印出这两个线程的threadLocalMap。

输出结果为:

-------------testStructure----------------  thread1  ----threadLocals (ThreadLocalMap), table.length = 16  --------table[0] -> null  --------table[1] -> entry key = java.lang.ThreadLocal@33baa315, value = threadLocal2-value  --------table[2] -> null  --------table[3] -> null  --------table[4] -> null  --------table[5] -> null  --------table[6] -> null  --------table[7] -> null  --------table[8] -> null  --------table[9] -> null  --------table[10] -> entry key = java.lang.ThreadLocal@4d42db5c, value = threadLocal1-value  --------table[11] -> null  --------table[12] -> null  --------table[13] -> null  --------table[14] -> null  --------table[15] -> null  thread2  ----threadLocals (ThreadLocalMap), table.length = 16  --------table[0] -> null  --------table[1] -> null  --------table[2] -> null  --------table[3] -> null  --------table[4] -> null  --------table[5] -> null  --------table[6] -> null  --------table[7] -> null  --------table[8] -> null  --------table[9] -> null  --------table[10] -> entry key = java.lang.ThreadLocal@4d42db5c, value = threadLocal1-value  --------table[11] -> null  --------table[12] -> null  --------table[13] -> null  --------table[14] -> null  --------table[15] -> null  ------------------------------------------

从结果上可以看出:

  • 线程1和线程2的threadLocalMap对象的table字段,是个数组,长度都是16
  • 由于线程1里给两个threadLocal对象设置了值,所以线程1的ThreadLocalMap里有两个entry,数组下标分别是1和10,其余的是null(如果你自己写代码验证,下标不一定是1和10,不需要纠结这个问题,只要前后对的上就行)
  • 由于线程2里只给一个threadLocal对象设置了值,所以线程1的ThreadLocalMap里只有一个entry,数组下标是10,其余的是null
  • threadLocal1这个对象在两个线程里都设置了值,所以当它作为key加入二者的threadLocalMap时,key是一样的,都是java.lang.ThreadLocal@4d42db5c;下标也是一样的,都是10。

为什么是WeakReference

查看Entry的源码,会发现Entry继承自WeakReference:

static class Entry extends WeakReference<ThreadLocal<?>> {      /** The value associated with this ThreadLocal. */      Object value;        Entry(ThreadLocal<?> k, Object v) {          super(k);          value = v;      }  }

构造函数里把key传给了super,也就是说,ThreadLocalMap中对key的引用,是WeakReference的。

Weak reference objects, which do not prevent their referents from being made finalizable, finalized, and then reclaimed. Weak references are most often used to implement canonicalizing mappings.

通俗点解释:

当一个对象仅仅被weak reference(弱引用), 而没有任何其他strong reference(强引用)的时候, 不论当前的内存空间是否足够,当GC运行的时候, 这个对象就会被回收。

看不明白没关系,还是写代码测试一下什么是WeakReference吧…

static void testWeakReference(){      Object obj1 = new Object();      Object obj2 = new Object();      WeakReference<Object> obj1WeakRef = new WeakReference<>(obj1);      WeakReference<Object> obj2WeakRf = new WeakReference<>(obj2);      //obj32StrongRef是强引用      Object obj2StrongRef = obj2;      Utils.println("before gc: obj1WeakRef = " + obj1WeakRef.get() + ", obj2WeakRef = " + obj2WeakRf.get() + ", obj2StrongRef = " + obj2StrongRef);        //把obj1和obj2设为null      obj1 = null;      obj2 = null;      //强制gc      forceGC();        Utils.println("after gc: obj1WeakRef = " + obj1WeakRef.get() + ", obj2WeakRef = " + obj2WeakRf.get() + ", obj2StrongRef = " + obj2StrongRef);  }

结果输出:

before gc: obj1WeakRef = java.lang.Object@4554617c, obj2WeakRef = java.lang.Object@74a14482, obj2StrongRef = java.lang.Object@74a14482  after gc: obj1WeakRef = null, obj2WeakRef = java.lang.Object@74a14482, obj2StrongRef = java.lang.Object@74a14482

从结果上可以看出:

  • 我们先new了两个对象(为避免混淆,称他们为Object1和Object2),分别用变量obj1和obj2指向它们,同时定义了一个obj2StrongRef,也指向Object2,最后把obj1和obj2均指向null
  • 由于Object1没有变量强引用它了,所以在gc后,Object1被回收了,obj1WeakRef.get()返回了null
  • 由于Object2还有obj2StrongRef在引用它,所以gc后,Object2依然存在,没有被回收。

那么,ThreadLocalMap中对key的引用,为什么是WeakReference的呢?

因为大部分情况下,线程不死

大部分情况下,线程不会频繁的创建和销毁,一般都会用线程池。所以线程对象一般不会被清除,线程的threadLocalMap就一直存在。 如果key对ThreadLocal是强引用,那么key永远不会被回收,即使我们程序里再也不用它了。

但是key是弱引用的话,情况就会得到改善:只要没有指向threadLocal的强引用了,这个ThreadLocal对象就会被清理。

我们还是写代码测试一下吧。

/**   * 测试ThreadLocal对象什么时候被回收   * @throws InterruptedException   */  static void testGC() throws InterruptedException {      Utils.println("-----------------testGC-------------------");      Thread thread1 = new Thread(() -> {          ThreadLocal<String> threadLocal1 = new ThreadLocal<>();          ThreadLocal<String> threadLocal2 = new ThreadLocal<>();            threadLocal1.set("threadLocal1-value");          threadLocal2.set("threadLocal2-value");            try {              Object threadLocalMap = getThreadLocalMap(Thread.currentThread());              Utils.println("print threadLocalMap before gc");              printThreadLocalMap(threadLocalMap);                //set threadLocal1 unreachable              threadLocal1 = null;                forceGC();                Utils.println("print threadLocalMap after gc");              printThreadLocalMap(threadLocalMap);              } catch (NoSuchFieldException | IllegalAccessException e) {              e.printStackTrace();          }        }, "thread1");        thread1.start();      thread1.join();      Utils.println("------------------------------------------");  }

我们在一个线程里为两个ThreadLocal对象赋值,最后把其中一个对象的强引用移除,gc后打印当前线程的threadLocalMap。 输出结果如下:

-----------------testGC-------------------  print threadLocalMap before gc  thread1  ----threadLocals (ThreadLocalMap), table.length = 16  --------table[0] -> null  --------table[1] -> entry key = java.lang.ThreadLocal@7bf9cebf, value = threadLocal2-value  --------table[2] -> null  --------table[3] -> null  --------table[4] -> null  --------table[5] -> null  --------table[6] -> null  --------table[7] -> null  --------table[8] -> null  --------table[9] -> null  --------table[10] -> entry key = java.lang.ThreadLocal@56342d38, value = threadLocal1-value  --------table[11] -> null  --------table[12] -> null  --------table[13] -> null  --------table[14] -> null  --------table[15] -> null  print threadLocalMap after gc  thread1  ----threadLocals (ThreadLocalMap), table.length = 16  --------table[0] -> null  --------table[1] -> entry key = java.lang.ThreadLocal@7bf9cebf, value = threadLocal2-value  --------table[2] -> null  --------table[3] -> null  --------table[4] -> null  --------table[5] -> null  --------table[6] -> null  --------table[7] -> null  --------table[8] -> null  --------table[9] -> null  --------table[10] -> entry key = null, value = threadLocal1-value  --------table[11] -> null  --------table[12] -> null  --------table[13] -> null  --------table[14] -> null  --------table[15] -> null  ------------------------------------------

从输出结果可以看到,当我们把threadLocal1的强引用移除并gc之后,table[10]的key变成了null,说明threadLocal1这个对象被回收了;threadLocal2的强引用还在,所以table[1]的key不是null,没有被回收。

但是你发现没有,table[10]的key虽然是null了,但value还活着! table[10]这个entry对象,也活着!

是的,因为只有key是WeakReference….

无用的entry什么时候被回收?

通过查看ThreadLocal的源码,发现在ThreadLocal对象的get/set/remove方法执行时,都有机会清除掉map中已经无用的entry。

最容易验证清除无用entry的场景分别是:

  • remove:这个不用说了,这哥们本来就是做这个的
  • get:当一个新的threadLocal对象(没有set过value)发生get调用时,也会作为新的entry加入map,在加入的过程中,有机会清除掉无用的entry,逻辑和下面的set相同。
  • set: 当一个新的threadLocal对象(没有set过value)发生set调用时,会在map中加入新的entry,此时有机会清除掉无用的entry,清除的逻辑是:
    • 清除掉table数组中的那些无用entry中的一部分,记住是一部分,这个一部分可能全部,也可能是0,具体算法请看ThreadLocalMap.cleanSomeSlots,这里不解释了。
    • 如果上一步的"一部分"是0(即清除了0个),并且map的size(是真实size,不是table.length)大于等于threshold(table.length的2/3),会执行一次rehash,在rehash的过程中,清理掉所有无用的entry,并减小size,清理后的size如果还大于等于threshold – threshold/4,则把table扩容为原来的两倍大小。

还有其他场景,但不好验证,这里就不提了。

ThreadLocal源码就不贴了,贴了也讲不明白,相关逻辑在setInitialValue、cleanSomeSlots、expungeStaleEntries、rehash、resize等方法里。

在我们写代码验证entry回收逻辑之前,还需要简单的提一下ThreadLocalMap的hash算法。

entry数组的下标如何确定?

每个ThreadLocal对象,都有一个threadLocalHashCode变量,在加入ThreadLocalMap的时候,根据这个threadLocalHashCode的值,对entry数组的长度取余(hash & (len – 1)),余数作为下标。

那么threadLocalHashCode是怎么计算的呢?看源码:

public class ThreadLocal<T>{      private final int threadLocalHashCode = nextHashCode();      private static AtomicInteger nextHashCode = new AtomicInteger();        private static final int HASH_INCREMENT = 0x61c88647;        private static int nextHashCode() {          return nextHashCode.getAndAdd(HASH_INCREMENT);      }      ...  }

ThreadLocal类维护了一个全局静态字段nextHashCode,每new一个ThreadLocal对象,nextHashCode都会递增0x61c88647,作为下一个ThreadLocal对象的threadLocalHashCode。

这个0x61c88647,是个神奇的数字,只要以它为递增值,那么和2的N次方取余时,在有限的次数内不会发生重复。 比如和16取余,那么在16次递增内,不会发生重复。还是写代码验证一下吧。

int hashCode = 0;  int HASH_INCREMENT = 0x61c88647;  int length = 16;    for(int i = 0; i < length ; i ++){      int h = hashCode & (length - 1);      hashCode += HASH_INCREMENT;      System.out.println("h = " + h + ", i = " + i);  }

输出结果为:

h = 0, i = 0  h = 7, i = 1  h = 14, i = 2  h = 5, i = 3  h = 12, i = 4  h = 3, i = 5  h = 10, i = 6  h = 1, i = 7  h = 8, i = 8  h = 15, i = 9  h = 6, i = 10  h = 13, i = 11  h = 4, i = 12  h = 11, i = 13  h = 2, i = 14  h = 9, i = 15

你看,h的值在16次递增内,没有发生重复。 但是要记住,2的N次方作为长度才会有这个效果,这也解释了为什么ThreadLocalMap的entry数组初始长度是16,每次都是2倍的扩容。

验证新threadLocal的get和set时回收部分无效的entry

为了验证出结果,我们需要先给ThreadLocal的nextHashCode重置一个初始值,这样在测试的时候,每个threadLocal的数组下标才会按照我们设计的思路走。

static void resetNextHashCode() throws NoSuchFieldException, IllegalAccessException {      Field nextHashCodeField = ThreadLocal.class.getDeclaredField("nextHashCode");      nextHashCodeField.setAccessible(true);      nextHashCodeField.set(null, new AtomicInteger(1253254570));  }

然后在测试代码里,我们先调用resetNextHashCode方法,然后加两个ThreadLocal对象并set值,gc前把强引用去除,gc后再new两个新的theadLocal对象,分别调用他们的get和set方法。 在每个关键点打印出threadLocalMap做比较。

static void testExpungeSomeEntriesWhenGetOrSet() throws InterruptedException {      Utils.println("----------testExpungeStaleEntries----------");      Thread thread1 = new Thread(() -> {          try {              resetNextHashCode();                //注意,这里必须有两个ThreadLocal,才能验证出threadLocal1被清理              ThreadLocal<String> threadLocal1 = new ThreadLocal<>();              ThreadLocal<String> threadLocal2 = new ThreadLocal<>();                threadLocal1.set("threadLocal1-value");              threadLocal2.set("threadLocal2-value");                  Object threadLocalMap = getThreadLocalMap(Thread.currentThread());              //set threadLocal1 unreachable              threadLocal1 = null;              threadLocal2 = null;              forceGC();                Utils.println("print threadLocalMap after gc");              printThreadLocalMap(threadLocalMap);                ThreadLocal<String> newThreadLocal1 = new ThreadLocal<>();              newThreadLocal1.get();              Utils.println("print threadLocalMap after call a new newThreadLocal1.get");              printThreadLocalMap(threadLocalMap);                ThreadLocal<String> newThreadLocal2 = new ThreadLocal<>();              newThreadLocal2.set("newThreadLocal2-value");              Utils.println("print threadLocalMap after call a new newThreadLocal2.set");              printThreadLocalMap(threadLocalMap);              } catch (NoSuchFieldException | IllegalAccessException e) {              e.printStackTrace();          }        }, "thread1");        thread1.start();      thread1.join();      Utils.println("------------------------------------------");  }

程序输出结果为:

----------testExpungeStaleEntries----------  print threadLocalMap after gc  thread1  ----threadLocals (ThreadLocalMap), table.length = 16  --------table[0] -> null  --------table[1] -> entry key = null, value = threadLocal2-value  --------table[2] -> null  --------table[3] -> null  --------table[4] -> null  --------table[5] -> null  --------table[6] -> null  --------table[7] -> null  --------table[8] -> null  --------table[9] -> null  --------table[10] -> entry key = null, value = threadLocal1-value  --------table[11] -> null  --------table[12] -> null  --------table[13] -> null  --------table[14] -> null  --------table[15] -> null  print threadLocalMap after call a new newThreadLocal1.get  thread1  ----threadLocals (ThreadLocalMap), table.length = 16  --------table[0] -> null  --------table[1] -> entry key = null, value = threadLocal2-value  --------table[2] -> null  --------table[3] -> null  --------table[4] -> null  --------table[5] -> null  --------table[6] -> null  --------table[7] -> null  --------table[8] -> entry key = java.lang.ThreadLocal@2b63dc81, value = null  --------table[9] -> null  --------table[10] -> null  --------table[11] -> null  --------table[12] -> null  --------table[13] -> null  --------table[14] -> null  --------table[15] -> null  print threadLocalMap after call a new newThreadLocal2.set  thread1  ----threadLocals (ThreadLocalMap), table.length = 16  --------table[0] -> null  --------table[1] -> null  --------table[2] -> null  --------table[3] -> null  --------table[4] -> null  --------table[5] -> null  --------table[6] -> null  --------table[7] -> null  --------table[8] -> entry key = java.lang.ThreadLocal@2b63dc81, value = null  --------table[9] -> null  --------table[10] -> null  --------table[11] -> null  --------table[12] -> null  --------table[13] -> null  --------table[14] -> null  --------table[15] -> entry key = java.lang.ThreadLocal@2e93c547, value = newThreadLocal2-value  ------------------------------------------

从结果上来看,

  • gc后table[1]和table[10]的key变成了null
  • new newThreadLocal1.get后,新增了table[8],table[10]被清理了,但table[1]还在(这就是cleanSomeSlots中some的意思)
  • new newThreadLocal2.set后,新增了table[15],table[1]被清理了。

验证map的size大于等于table.length的2/3时回收所有无效的entry

    static void testExpungeAllEntries() throws InterruptedException {          Utils.println("----------testExpungeStaleEntries----------");          Thread thread1 = new Thread(() -> {              try {                  resetNextHashCode();                    int threshold = 16 * 2 / 3;                  ThreadLocal[] threadLocals = new ThreadLocal[threshold - 1];                  for(int i = 0; i < threshold - 1; i ++){                      threadLocals[i] = new ThreadLocal<String>();                      threadLocals[i].set("threadLocal" + i + "-value");                  }                    Object threadLocalMap = getThreadLocalMap(Thread.currentThread());                    threadLocals[1] = null;                  threadLocals[8] = null;                  //threadLocals[6] = null;                  //threadLocals[4] = null;                  //threadLocals[2] = null;                  forceGC();                    Utils.println("print threadLocalMap after gc");                  printThreadLocalMap(threadLocalMap);                    ThreadLocal<String> newThreadLocal1 = new ThreadLocal<>();                  newThreadLocal1.set("newThreadLocal1-value");                  Utils.println("print threadLocalMap after call a new newThreadLocal1.get");                  printThreadLocalMap(threadLocalMap);                } catch (NoSuchFieldException | IllegalAccessException e) {                  e.printStackTrace();              }            }, "thread1");            thread1.start();          thread1.join();          Utils.println("------------------------------------------");      }

我们先创建了9个threadLocal对象并设置了值,然后去掉了其中2个的强引用(注意这2个可不是随意挑选的)。 gc后再添加一个新的threadLocal,最后打印出最新的map。输出为:

----------testExpungeStaleEntries----------  print threadLocalMap after gc  thread1  ----threadLocals (ThreadLocalMap), table.length = 16  --------table[0] -> null  --------table[1] -> entry key = null, value = threadLocal1-value  --------table[2] -> entry key = null, value = threadLocal8-value  --------table[3] -> null  --------table[4] -> entry key = java.lang.ThreadLocal@60523912, value = threadLocal6-value  --------table[5] -> null  --------table[6] -> entry key = java.lang.ThreadLocal@48fccd7a, value = threadLocal4-value  --------table[7] -> null  --------table[8] -> entry key = java.lang.ThreadLocal@188bbe72, value = threadLocal2-value  --------table[9] -> null  --------table[10] -> entry key = java.lang.ThreadLocal@19e0ebe8, value = threadLocal0-value  --------table[11] -> entry key = java.lang.ThreadLocal@688bcb6f, value = threadLocal7-value  --------table[12] -> null  --------table[13] -> entry key = java.lang.ThreadLocal@46324c19, value = threadLocal5-value  --------table[14] -> null  --------table[15] -> entry key = java.lang.ThreadLocal@38f1283, value = threadLocal3-value  print threadLocalMap after call a new newThreadLocal1.get  thread1  ----threadLocals (ThreadLocalMap), table.length = 32  --------table[0] -> null  --------table[1] -> null  --------table[2] -> null  --------table[3] -> null  --------table[4] -> null  --------table[5] -> null  --------table[6] -> entry key = java.lang.ThreadLocal@48fccd7a, value = threadLocal4-value  --------table[7] -> null  --------table[8] -> null  --------table[9] -> entry key = java.lang.ThreadLocal@1dae16b1, value = newThreadLocal1-value  --------table[10] -> entry key = java.lang.ThreadLocal@19e0ebe8, value = threadLocal0-value  --------table[11] -> null  --------table[12] -> null  --------table[13] -> entry key = java.lang.ThreadLocal@46324c19, value = threadLocal5-value  --------table[14] -> null  --------table[15] -> null  --------table[16] -> null  --------table[17] -> null  --------table[18] -> null  --------table[19] -> null  --------table[20] -> entry key = java.lang.ThreadLocal@60523912, value = threadLocal6-value  --------table[21] -> null  --------table[22] -> null  --------table[23] -> null  --------table[24] -> entry key = java.lang.ThreadLocal@188bbe72, value = threadLocal2-value  --------table[25] -> null  --------table[26] -> null  --------table[27] -> entry key = java.lang.ThreadLocal@688bcb6f, value = threadLocal7-value  --------table[28] -> null  --------table[29] -> null  --------table[30] -> null  --------table[31] -> entry key = java.lang.ThreadLocal@38f1283, value = threadLocal3-value  ------------------------------------------

从结果上看:

  • gc后table[1]和table[2](即threadLocal1和threadLocal8)的key变成了null
  • 加入新的threadLocal后,table的长度从16变成了32(因为此时的size是8,正好等于10 – 10/4,所以扩容),并且threadLocal1和threadLocal8这两个entry不见了。

如果在gc前,我们把threadLocals[1、8、6、4、2]都去掉强引用,加入新threadLocal后会发现1、8、6、4、2被清除了,但没有扩容,因为此时size是5,小于10-10/4。这个逻辑就不贴测试结果了,你可以取消注释上面代码中相关的逻辑试试。

大部分场景下,ThreadLocal对象的生命周期是和app一致的,弱引用形同虚设

回到现实中。

我们用ThreadLocal的目的,无非是在跨方法调用时更方便的线程安全地存储和使用变量。这就意味着ThreadLocal的生命周期很长,甚至和app是一起存活的,强引用一直在。

既然强引用一直存在,那么弱引用就形同虚设了。

所以在确定不再需要ThreadLocal中的值的情况下,还是老老实实的调用remove方法吧!

代码地址

https://github.com/kongxiangxin/pine/tree/master/threadlocal